Cargando…
Effect of neurotransmitters and bone marrow cells for neuronal regeneration in iatrogenic spinal cord injury: An experimental study
BACKGROUND: Spinal cord trauma is a major health problem with associated physical, social, economic and psychological sequelae. Despite many advances in research and treatment modalities, the pathophysiology of spinal cord injury remains unclear, and morbidity and mortality among these patients rema...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2911923/ https://www.ncbi.nlm.nih.gov/pubmed/20697476 http://dx.doi.org/10.4103/0019-5413.65142 |
Sumario: | BACKGROUND: Spinal cord trauma is a major health problem with associated physical, social, economic and psychological sequelae. Despite many advances in research and treatment modalities, the pathophysiology of spinal cord injury remains unclear, and morbidity and mortality among these patients remain high. This experimental study investigates the regenerative cell proliferation effects of bone marrow supplemented with neurotransmitters combinations in the regeneration of spinal cord injury MATERIALS AND METHODS: Ethical Committee Clearance was obtained for animal study. All animal care and procedures were in accordance with the CPCSEA and National Institute of Health guidelines. Thirty Wistar rats with monoplegia following surgical hemitransection of the spinal cord were used for the study. Half of them were randomly selected as the test group and the rest as the control group. Spinal cord injury model of Wistar rats in the test group were treated by infusing a combination of neurotransmitters and bone marrow at the site of injury using a special polythene tube and reservoir for 21 days. In the control group of rats with monoplegia, normal saline was infused at the site of injury for 21 days. The observations are recorded along with results. RESULTS: The monoplegia in the test group of rats recovered significantly (P value < 0.01) with supplementation of the bone marrow cells and neurotransmitters combination. In the control group of rats, there was no recovery. The reward-seeking locomotor test and sensory recovery test confirmed recovery from spinal cord injury in the test group with significance. CONCLUSIONS: The neurotransmitters and bone marrow combination was responsible for functional recovery in the test group of rats with experimental spinal cord injury We believe that the combination of neurotransmitters along with bone marrow may be a scope of future research in patients with spinal cord injury. |
---|