Cargando…
Model representation of the nonlinear step response in cardiac muscle
Motivated by the need for an analytical tool that can be used routinely to analyze data collected from isolated, detergent-skinned cardiac muscle fibers, we developed a mathematical model for representing the force response to step changes in muscle length (i.e., quick stretch and release). Our prop...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2912065/ https://www.ncbi.nlm.nih.gov/pubmed/20660660 http://dx.doi.org/10.1085/jgp.201010467 |
_version_ | 1782184548744822784 |
---|---|
author | Ford, Steven J. Chandra, Murali Mamidi, Ranganath Dong, Wenji Campbell, Kenneth B. |
author_facet | Ford, Steven J. Chandra, Murali Mamidi, Ranganath Dong, Wenji Campbell, Kenneth B. |
author_sort | Ford, Steven J. |
collection | PubMed |
description | Motivated by the need for an analytical tool that can be used routinely to analyze data collected from isolated, detergent-skinned cardiac muscle fibers, we developed a mathematical model for representing the force response to step changes in muscle length (i.e., quick stretch and release). Our proposed model is reasonably simple, consisting of only five parameters representing: (1) the rate constant by which length change–induced distortion of elastic elements is dissipated; (2) the stiffness of the muscle fiber; (3) the amplitude of length-mediated recruitment of stiffness elements; (4) the rate constant by which this length-mediated recruitment takes place; and (5) the magnitude of the nonlinear interaction term by which distortion of elastic elements affects the number of recruited stiffness elements. Fitting this model to a family of force recordings representing responses to eight amplitudes of step length change (±2.0% baseline muscle length in 0.5% increments) enabled four things: (1) reproduction of all the identifiable features seen in a family of force responses to both positive and negative length changes; (2) close fitting of all records from the whole family of these responses with very little residual error; (3) estimation of all five model parameters with a great degree of certainty; and (4) importantly, ready discrimination between cardiac muscle fibers with different contractile regulatory proteins but showing only subtly different contractile function. We recommend this mathematical model as an analytic tool for routine use in studies of cardiac muscle fiber contractile function. Such model-based analysis gives novel insight to the contractile behavior of cardiac muscle fibers, and it is useful for characterizing the mechanistic effects that alterations of cardiac contractile proteins have on cardiac contractile function. |
format | Text |
id | pubmed-2912065 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-29120652011-02-01 Model representation of the nonlinear step response in cardiac muscle Ford, Steven J. Chandra, Murali Mamidi, Ranganath Dong, Wenji Campbell, Kenneth B. J Gen Physiol Article Motivated by the need for an analytical tool that can be used routinely to analyze data collected from isolated, detergent-skinned cardiac muscle fibers, we developed a mathematical model for representing the force response to step changes in muscle length (i.e., quick stretch and release). Our proposed model is reasonably simple, consisting of only five parameters representing: (1) the rate constant by which length change–induced distortion of elastic elements is dissipated; (2) the stiffness of the muscle fiber; (3) the amplitude of length-mediated recruitment of stiffness elements; (4) the rate constant by which this length-mediated recruitment takes place; and (5) the magnitude of the nonlinear interaction term by which distortion of elastic elements affects the number of recruited stiffness elements. Fitting this model to a family of force recordings representing responses to eight amplitudes of step length change (±2.0% baseline muscle length in 0.5% increments) enabled four things: (1) reproduction of all the identifiable features seen in a family of force responses to both positive and negative length changes; (2) close fitting of all records from the whole family of these responses with very little residual error; (3) estimation of all five model parameters with a great degree of certainty; and (4) importantly, ready discrimination between cardiac muscle fibers with different contractile regulatory proteins but showing only subtly different contractile function. We recommend this mathematical model as an analytic tool for routine use in studies of cardiac muscle fiber contractile function. Such model-based analysis gives novel insight to the contractile behavior of cardiac muscle fibers, and it is useful for characterizing the mechanistic effects that alterations of cardiac contractile proteins have on cardiac contractile function. The Rockefeller University Press 2010-08 /pmc/articles/PMC2912065/ /pubmed/20660660 http://dx.doi.org/10.1085/jgp.201010467 Text en © 2010 Ford et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/). |
spellingShingle | Article Ford, Steven J. Chandra, Murali Mamidi, Ranganath Dong, Wenji Campbell, Kenneth B. Model representation of the nonlinear step response in cardiac muscle |
title | Model representation of the nonlinear step response in cardiac muscle |
title_full | Model representation of the nonlinear step response in cardiac muscle |
title_fullStr | Model representation of the nonlinear step response in cardiac muscle |
title_full_unstemmed | Model representation of the nonlinear step response in cardiac muscle |
title_short | Model representation of the nonlinear step response in cardiac muscle |
title_sort | model representation of the nonlinear step response in cardiac muscle |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2912065/ https://www.ncbi.nlm.nih.gov/pubmed/20660660 http://dx.doi.org/10.1085/jgp.201010467 |
work_keys_str_mv | AT fordstevenj modelrepresentationofthenonlinearstepresponseincardiacmuscle AT chandramurali modelrepresentationofthenonlinearstepresponseincardiacmuscle AT mamidiranganath modelrepresentationofthenonlinearstepresponseincardiacmuscle AT dongwenji modelrepresentationofthenonlinearstepresponseincardiacmuscle AT campbellkennethb modelrepresentationofthenonlinearstepresponseincardiacmuscle |