Cargando…

Clioquinol Inhibits Zinc-Triggered Caspase Activation in the Hippocampal CA1 Region of a Global Ischemic Gerbil Model

BACKGROUND: Excessive release of chelatable zinc from excitatory synaptic vesicles is involved in the pathogenesis of selective neuronal cell death following transient forebrain ischemia. The present study was designed to examine the neuroprotective effect of a membrane-permeable zinc chelator, clio...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Tao, Zheng, Wei, Xu, He, Zhou, Jia-Min, Wang, Zhan-You
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2912365/
https://www.ncbi.nlm.nih.gov/pubmed/20686690
http://dx.doi.org/10.1371/journal.pone.0011888
Descripción
Sumario:BACKGROUND: Excessive release of chelatable zinc from excitatory synaptic vesicles is involved in the pathogenesis of selective neuronal cell death following transient forebrain ischemia. The present study was designed to examine the neuroprotective effect of a membrane-permeable zinc chelator, clioquinol (CQ), in the CA1 region of the gerbil hippocampus after transient global ischemia. METHODOLOGY/PRINCIPAL FINDINGS: The common carotid arteries were occluded bilaterally, and CQ (10 mg/kg, i.p.) was injected into gerbils once a day. The zinc chelating effect of CQ was examined with TSQ fluorescence and autometallography. Neuronal death, the expression levels of caspases and apoptosis inducing factor (AIF) were evaluated using TUNEL, in situ hybridization and Western blotting, respectively. We were able to show for the first time that CQ treatment attenuates the ischemia-induced zinc accumulation in the CA1 pyramidal neurons, accompanied by less neuronal loss in the CA1 field of the hippocampus after ischemia. Furthermore, the expression levels of caspase-3, -9, and AIF were significantly decreased in the hippocampus of CQ-treated gerbils. CONCLUSIONS/SIGNIFICANCE: The present study indicates that the neuroprotective effect of CQ is related to downregulation of zinc-triggered caspase activation in the hippocampal CA1 region of gerbils with global ischemia.