Cargando…

Altered Actin Centripetal Retrograde Flow in Physically Restricted Immunological Synapses

Antigen recognition by T cells involves large scale spatial reorganization of numerous receptor, adhesion, and costimulatory proteins within the T cell-antigen presenting cell (APC) junction. The resulting patterns can be distinctive, and are collectively known as the immunological synapse. Dynamica...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Cheng-han, Wu, Hung-Jen, Kaizuka, Yoshihisa, Vale, Ronald D., Groves, Jay T.
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2912367/
https://www.ncbi.nlm.nih.gov/pubmed/20686692
http://dx.doi.org/10.1371/journal.pone.0011878
_version_ 1782184591733293056
author Yu, Cheng-han
Wu, Hung-Jen
Kaizuka, Yoshihisa
Vale, Ronald D.
Groves, Jay T.
author_facet Yu, Cheng-han
Wu, Hung-Jen
Kaizuka, Yoshihisa
Vale, Ronald D.
Groves, Jay T.
author_sort Yu, Cheng-han
collection PubMed
description Antigen recognition by T cells involves large scale spatial reorganization of numerous receptor, adhesion, and costimulatory proteins within the T cell-antigen presenting cell (APC) junction. The resulting patterns can be distinctive, and are collectively known as the immunological synapse. Dynamical assembly of cytoskeletal network is believed to play an important role in driving these assembly processes. In one experimental strategy, the APC is replaced with a synthetic supported membrane. An advantage of this configuration is that solid structures patterned onto the underlying substrate can guide immunological synapse assembly into altered patterns. Here, we use mobile anti-CD3ε on the spatial-partitioned supported bilayer to ligate and trigger T cell receptor (TCR) in live Jurkat T cells. Simultaneous tracking of both TCR clusters and GFP-actin speckles reveals their dynamic association and individual flow patterns. Actin retrograde flow directs the inward transport of TCR clusters. Flow-based particle tracking algorithms allow us to investigate the velocity distribution of actin flow field across the whole synapse, and centripetal velocity of actin flow decreases as it moves toward the center of synapse. Localized actin flow analysis reveals that, while there is no influence on actin motion from substrate patterns directly, velocity differences of actin are observed over physically trapped TCR clusters. Actin flow regains its velocity immediately after passing through confined TCR clusters. These observations are consistent with a dynamic and dissipative coupling between TCR clusters and viscoelastic actin network.
format Text
id pubmed-2912367
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-29123672010-08-03 Altered Actin Centripetal Retrograde Flow in Physically Restricted Immunological Synapses Yu, Cheng-han Wu, Hung-Jen Kaizuka, Yoshihisa Vale, Ronald D. Groves, Jay T. PLoS One Research Article Antigen recognition by T cells involves large scale spatial reorganization of numerous receptor, adhesion, and costimulatory proteins within the T cell-antigen presenting cell (APC) junction. The resulting patterns can be distinctive, and are collectively known as the immunological synapse. Dynamical assembly of cytoskeletal network is believed to play an important role in driving these assembly processes. In one experimental strategy, the APC is replaced with a synthetic supported membrane. An advantage of this configuration is that solid structures patterned onto the underlying substrate can guide immunological synapse assembly into altered patterns. Here, we use mobile anti-CD3ε on the spatial-partitioned supported bilayer to ligate and trigger T cell receptor (TCR) in live Jurkat T cells. Simultaneous tracking of both TCR clusters and GFP-actin speckles reveals their dynamic association and individual flow patterns. Actin retrograde flow directs the inward transport of TCR clusters. Flow-based particle tracking algorithms allow us to investigate the velocity distribution of actin flow field across the whole synapse, and centripetal velocity of actin flow decreases as it moves toward the center of synapse. Localized actin flow analysis reveals that, while there is no influence on actin motion from substrate patterns directly, velocity differences of actin are observed over physically trapped TCR clusters. Actin flow regains its velocity immediately after passing through confined TCR clusters. These observations are consistent with a dynamic and dissipative coupling between TCR clusters and viscoelastic actin network. Public Library of Science 2010-07-29 /pmc/articles/PMC2912367/ /pubmed/20686692 http://dx.doi.org/10.1371/journal.pone.0011878 Text en Yu et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Yu, Cheng-han
Wu, Hung-Jen
Kaizuka, Yoshihisa
Vale, Ronald D.
Groves, Jay T.
Altered Actin Centripetal Retrograde Flow in Physically Restricted Immunological Synapses
title Altered Actin Centripetal Retrograde Flow in Physically Restricted Immunological Synapses
title_full Altered Actin Centripetal Retrograde Flow in Physically Restricted Immunological Synapses
title_fullStr Altered Actin Centripetal Retrograde Flow in Physically Restricted Immunological Synapses
title_full_unstemmed Altered Actin Centripetal Retrograde Flow in Physically Restricted Immunological Synapses
title_short Altered Actin Centripetal Retrograde Flow in Physically Restricted Immunological Synapses
title_sort altered actin centripetal retrograde flow in physically restricted immunological synapses
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2912367/
https://www.ncbi.nlm.nih.gov/pubmed/20686692
http://dx.doi.org/10.1371/journal.pone.0011878
work_keys_str_mv AT yuchenghan alteredactincentripetalretrogradeflowinphysicallyrestrictedimmunologicalsynapses
AT wuhungjen alteredactincentripetalretrogradeflowinphysicallyrestrictedimmunologicalsynapses
AT kaizukayoshihisa alteredactincentripetalretrogradeflowinphysicallyrestrictedimmunologicalsynapses
AT valeronaldd alteredactincentripetalretrogradeflowinphysicallyrestrictedimmunologicalsynapses
AT grovesjayt alteredactincentripetalretrogradeflowinphysicallyrestrictedimmunologicalsynapses