Cargando…

Automated 3D trabecular bone structure analysis of the proximal femur—prediction of biomechanical strength by CT and DXA

SUMMARY: The standard diagnostic technique for assessing osteoporosis is dual X-ray absorptiometry (DXA) measuring bone mass parameters. In this study, a combination of DXA and trabecular structure parameters (acquired by computed tomography [CT]) most accurately predicted the biomechanical strength...

Descripción completa

Detalles Bibliográficos
Autores principales: Baum, T., Carballido-Gamio, J., Huber, M. B., Müller, D., Monetti, R., Räth, C., Eckstein, F., Lochmüller, E. M., Majumdar, S., Rummeny, E. J., Link, T. M., Bauer, J. S.
Formato: Texto
Lenguaje:English
Publicado: Springer-Verlag 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2912724/
https://www.ncbi.nlm.nih.gov/pubmed/19859642
http://dx.doi.org/10.1007/s00198-009-1090-z
_version_ 1782184612997365760
author Baum, T.
Carballido-Gamio, J.
Huber, M. B.
Müller, D.
Monetti, R.
Räth, C.
Eckstein, F.
Lochmüller, E. M.
Majumdar, S.
Rummeny, E. J.
Link, T. M.
Bauer, J. S.
author_facet Baum, T.
Carballido-Gamio, J.
Huber, M. B.
Müller, D.
Monetti, R.
Räth, C.
Eckstein, F.
Lochmüller, E. M.
Majumdar, S.
Rummeny, E. J.
Link, T. M.
Bauer, J. S.
author_sort Baum, T.
collection PubMed
description SUMMARY: The standard diagnostic technique for assessing osteoporosis is dual X-ray absorptiometry (DXA) measuring bone mass parameters. In this study, a combination of DXA and trabecular structure parameters (acquired by computed tomography [CT]) most accurately predicted the biomechanical strength of the proximal femur and allowed for a better prediction than DXA alone. INTRODUCTION: An automated 3D segmentation algorithm was applied to determine specific structure parameters of the trabecular bone in CT images of the proximal femur. This was done to evaluate the ability of these parameters for predicting biomechanical femoral bone strength in comparison with bone mineral content (BMC) and bone mineral density (BMD) acquired by DXA as standard diagnostic technique. METHODS: One hundred eighty-seven proximal femur specimens were harvested from formalin-fixed human cadavers. BMC and BMD were determined by DXA. Structure parameters of the trabecular bone (i.e., morphometry, fuzzy logic, Minkowski functionals, and the scaling index method [SIM]) were computed from CT images. Absolute femoral bone strength was assessed with a biomechanical side-impact test measuring failure load (FL). Adjusted FL parameters for appraisal of relative bone strength were calculated by dividing FL by influencing variables such as body height, weight, or femoral head diameter. RESULTS: The best single parameter predicting FL and adjusted FL parameters was apparent trabecular separation (morphometry) or DXA-derived BMC or BMD with correlations up to r = 0.802. In combination with DXA, structure parameters (most notably the SIM and morphometry) added in linear regression models significant information in predicting FL and all adjusted FL parameters (up to R (adj) = 0.872) and allowed for a significant better prediction than DXA alone. CONCLUSION: A combination of bone mass (DXA) and structure parameters of the trabecular bone (linear and nonlinear, global and local) most accurately predicted absolute and relative femoral bone strength.
format Text
id pubmed-2912724
institution National Center for Biotechnology Information
language English
publishDate 2009
publisher Springer-Verlag
record_format MEDLINE/PubMed
spelling pubmed-29127242010-08-09 Automated 3D trabecular bone structure analysis of the proximal femur—prediction of biomechanical strength by CT and DXA Baum, T. Carballido-Gamio, J. Huber, M. B. Müller, D. Monetti, R. Räth, C. Eckstein, F. Lochmüller, E. M. Majumdar, S. Rummeny, E. J. Link, T. M. Bauer, J. S. Osteoporos Int Original Article SUMMARY: The standard diagnostic technique for assessing osteoporosis is dual X-ray absorptiometry (DXA) measuring bone mass parameters. In this study, a combination of DXA and trabecular structure parameters (acquired by computed tomography [CT]) most accurately predicted the biomechanical strength of the proximal femur and allowed for a better prediction than DXA alone. INTRODUCTION: An automated 3D segmentation algorithm was applied to determine specific structure parameters of the trabecular bone in CT images of the proximal femur. This was done to evaluate the ability of these parameters for predicting biomechanical femoral bone strength in comparison with bone mineral content (BMC) and bone mineral density (BMD) acquired by DXA as standard diagnostic technique. METHODS: One hundred eighty-seven proximal femur specimens were harvested from formalin-fixed human cadavers. BMC and BMD were determined by DXA. Structure parameters of the trabecular bone (i.e., morphometry, fuzzy logic, Minkowski functionals, and the scaling index method [SIM]) were computed from CT images. Absolute femoral bone strength was assessed with a biomechanical side-impact test measuring failure load (FL). Adjusted FL parameters for appraisal of relative bone strength were calculated by dividing FL by influencing variables such as body height, weight, or femoral head diameter. RESULTS: The best single parameter predicting FL and adjusted FL parameters was apparent trabecular separation (morphometry) or DXA-derived BMC or BMD with correlations up to r = 0.802. In combination with DXA, structure parameters (most notably the SIM and morphometry) added in linear regression models significant information in predicting FL and all adjusted FL parameters (up to R (adj) = 0.872) and allowed for a significant better prediction than DXA alone. CONCLUSION: A combination of bone mass (DXA) and structure parameters of the trabecular bone (linear and nonlinear, global and local) most accurately predicted absolute and relative femoral bone strength. Springer-Verlag 2009-10-27 2010 /pmc/articles/PMC2912724/ /pubmed/19859642 http://dx.doi.org/10.1007/s00198-009-1090-z Text en © The Author(s) 2009 https://creativecommons.org/licenses/by-nc/4.0/ This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
spellingShingle Original Article
Baum, T.
Carballido-Gamio, J.
Huber, M. B.
Müller, D.
Monetti, R.
Räth, C.
Eckstein, F.
Lochmüller, E. M.
Majumdar, S.
Rummeny, E. J.
Link, T. M.
Bauer, J. S.
Automated 3D trabecular bone structure analysis of the proximal femur—prediction of biomechanical strength by CT and DXA
title Automated 3D trabecular bone structure analysis of the proximal femur—prediction of biomechanical strength by CT and DXA
title_full Automated 3D trabecular bone structure analysis of the proximal femur—prediction of biomechanical strength by CT and DXA
title_fullStr Automated 3D trabecular bone structure analysis of the proximal femur—prediction of biomechanical strength by CT and DXA
title_full_unstemmed Automated 3D trabecular bone structure analysis of the proximal femur—prediction of biomechanical strength by CT and DXA
title_short Automated 3D trabecular bone structure analysis of the proximal femur—prediction of biomechanical strength by CT and DXA
title_sort automated 3d trabecular bone structure analysis of the proximal femur—prediction of biomechanical strength by ct and dxa
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2912724/
https://www.ncbi.nlm.nih.gov/pubmed/19859642
http://dx.doi.org/10.1007/s00198-009-1090-z
work_keys_str_mv AT baumt automated3dtrabecularbonestructureanalysisoftheproximalfemurpredictionofbiomechanicalstrengthbyctanddxa
AT carballidogamioj automated3dtrabecularbonestructureanalysisoftheproximalfemurpredictionofbiomechanicalstrengthbyctanddxa
AT hubermb automated3dtrabecularbonestructureanalysisoftheproximalfemurpredictionofbiomechanicalstrengthbyctanddxa
AT mullerd automated3dtrabecularbonestructureanalysisoftheproximalfemurpredictionofbiomechanicalstrengthbyctanddxa
AT monettir automated3dtrabecularbonestructureanalysisoftheproximalfemurpredictionofbiomechanicalstrengthbyctanddxa
AT rathc automated3dtrabecularbonestructureanalysisoftheproximalfemurpredictionofbiomechanicalstrengthbyctanddxa
AT ecksteinf automated3dtrabecularbonestructureanalysisoftheproximalfemurpredictionofbiomechanicalstrengthbyctanddxa
AT lochmullerem automated3dtrabecularbonestructureanalysisoftheproximalfemurpredictionofbiomechanicalstrengthbyctanddxa
AT majumdars automated3dtrabecularbonestructureanalysisoftheproximalfemurpredictionofbiomechanicalstrengthbyctanddxa
AT rummenyej automated3dtrabecularbonestructureanalysisoftheproximalfemurpredictionofbiomechanicalstrengthbyctanddxa
AT linktm automated3dtrabecularbonestructureanalysisoftheproximalfemurpredictionofbiomechanicalstrengthbyctanddxa
AT bauerjs automated3dtrabecularbonestructureanalysisoftheproximalfemurpredictionofbiomechanicalstrengthbyctanddxa