Cargando…
Characterization of Diaphanous-related formin FMNL2 in human tissues
BACKGROUND: Diaphanous-related formins govern actin-based processes involved in many cellular functions, such as cell movement and invasion. Possible connections to developmental processes and cellular changes associated with malignant phenotype make them interesting study targets. In spite of this,...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2912821/ https://www.ncbi.nlm.nih.gov/pubmed/20633255 http://dx.doi.org/10.1186/1471-2121-11-55 |
_version_ | 1782184628565573632 |
---|---|
author | Gardberg, Maria Talvinen, Kati Kaipio, Katja Iljin, Kristiina Kampf, Caroline Uhlen, Mathias Carpén, Olli |
author_facet | Gardberg, Maria Talvinen, Kati Kaipio, Katja Iljin, Kristiina Kampf, Caroline Uhlen, Mathias Carpén, Olli |
author_sort | Gardberg, Maria |
collection | PubMed |
description | BACKGROUND: Diaphanous-related formins govern actin-based processes involved in many cellular functions, such as cell movement and invasion. Possible connections to developmental processes and cellular changes associated with malignant phenotype make them interesting study targets. In spite of this, very little is known of the tissue distribution and cellular location of any mammalian formin. Here we have carried out a comprehensive analysis of the formin family member formin -like 2 (FMNL2) in human tissues. RESULTS: An FMNL2 antibody was raised and characterized. The affinity-purified FMNL2 antibody was validated by Western blotting, Northern blotting, a peptide competition assay and siRNA experiments. Bioinformatics-based mRNA profiling indicated that FMNL2 is widely expressed in human tissues. The highest mRNA levels were seen in central and peripheral nervous systems. Immunohistochemical analysis of 26 different human tissues showed that FMNL2 is widely expressed, in agreement with the mRNA profile. The widest expression was detected in the central nervous system, since both neurons and glial cells expressed FMNL2. Strong expression was also seen in many epithelia. However, the expression in different cell types was not ubiquitous. Many mesenchymal cell types showed weak immunoreactivity and cells lacking expression were seen in many tissues. The subcellular location of FMNL2 was cytoplasmic, and in some tissues a strong perinuclear dot was detected. In cultured cells FMNL2 showed mostly a cytoplasmic localization with perinuclear accumulation consistent with the Golgi apparatus. Furthermore, FMNL2 co-localized with F-actin to the tips of cellular protrusions in WM164 human melanoma cells. This finding is in line with FMNL2's proposed function in the formation of actin filaments in cellular protrusions, during amoeboid cellular migration. CONCLUSION: FMNL2 is expressed in multiple human tissues, not only in the central nervous system. The expression is especially strong in gastrointestinal and mammary epithelia, lymphatic tissues, placenta, and in the reproductive tract. In cultured melanoma cells, FMNL2 co-localizes with F-actin dots at the tips of cellular protrusions. |
format | Text |
id | pubmed-2912821 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-29128212010-07-31 Characterization of Diaphanous-related formin FMNL2 in human tissues Gardberg, Maria Talvinen, Kati Kaipio, Katja Iljin, Kristiina Kampf, Caroline Uhlen, Mathias Carpén, Olli BMC Cell Biol Research Article BACKGROUND: Diaphanous-related formins govern actin-based processes involved in many cellular functions, such as cell movement and invasion. Possible connections to developmental processes and cellular changes associated with malignant phenotype make them interesting study targets. In spite of this, very little is known of the tissue distribution and cellular location of any mammalian formin. Here we have carried out a comprehensive analysis of the formin family member formin -like 2 (FMNL2) in human tissues. RESULTS: An FMNL2 antibody was raised and characterized. The affinity-purified FMNL2 antibody was validated by Western blotting, Northern blotting, a peptide competition assay and siRNA experiments. Bioinformatics-based mRNA profiling indicated that FMNL2 is widely expressed in human tissues. The highest mRNA levels were seen in central and peripheral nervous systems. Immunohistochemical analysis of 26 different human tissues showed that FMNL2 is widely expressed, in agreement with the mRNA profile. The widest expression was detected in the central nervous system, since both neurons and glial cells expressed FMNL2. Strong expression was also seen in many epithelia. However, the expression in different cell types was not ubiquitous. Many mesenchymal cell types showed weak immunoreactivity and cells lacking expression were seen in many tissues. The subcellular location of FMNL2 was cytoplasmic, and in some tissues a strong perinuclear dot was detected. In cultured cells FMNL2 showed mostly a cytoplasmic localization with perinuclear accumulation consistent with the Golgi apparatus. Furthermore, FMNL2 co-localized with F-actin to the tips of cellular protrusions in WM164 human melanoma cells. This finding is in line with FMNL2's proposed function in the formation of actin filaments in cellular protrusions, during amoeboid cellular migration. CONCLUSION: FMNL2 is expressed in multiple human tissues, not only in the central nervous system. The expression is especially strong in gastrointestinal and mammary epithelia, lymphatic tissues, placenta, and in the reproductive tract. In cultured melanoma cells, FMNL2 co-localizes with F-actin dots at the tips of cellular protrusions. BioMed Central 2010-07-15 /pmc/articles/PMC2912821/ /pubmed/20633255 http://dx.doi.org/10.1186/1471-2121-11-55 Text en Copyright ©2010 Gardberg et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Gardberg, Maria Talvinen, Kati Kaipio, Katja Iljin, Kristiina Kampf, Caroline Uhlen, Mathias Carpén, Olli Characterization of Diaphanous-related formin FMNL2 in human tissues |
title | Characterization of Diaphanous-related formin FMNL2 in human tissues |
title_full | Characterization of Diaphanous-related formin FMNL2 in human tissues |
title_fullStr | Characterization of Diaphanous-related formin FMNL2 in human tissues |
title_full_unstemmed | Characterization of Diaphanous-related formin FMNL2 in human tissues |
title_short | Characterization of Diaphanous-related formin FMNL2 in human tissues |
title_sort | characterization of diaphanous-related formin fmnl2 in human tissues |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2912821/ https://www.ncbi.nlm.nih.gov/pubmed/20633255 http://dx.doi.org/10.1186/1471-2121-11-55 |
work_keys_str_mv | AT gardbergmaria characterizationofdiaphanousrelatedforminfmnl2inhumantissues AT talvinenkati characterizationofdiaphanousrelatedforminfmnl2inhumantissues AT kaipiokatja characterizationofdiaphanousrelatedforminfmnl2inhumantissues AT iljinkristiina characterizationofdiaphanousrelatedforminfmnl2inhumantissues AT kampfcaroline characterizationofdiaphanousrelatedforminfmnl2inhumantissues AT uhlenmathias characterizationofdiaphanousrelatedforminfmnl2inhumantissues AT carpenolli characterizationofdiaphanousrelatedforminfmnl2inhumantissues |