Cargando…

Dual-functioning transcription factors in the developmental gene network of Drosophila melanogaster

BACKGROUND: Quantitative models for transcriptional regulation have shown great promise for advancing our understanding of the biological mechanisms underlying gene regulation. However, all of the models to date assume a transcription factor (TF) to have either activating or repressing function towa...

Descripción completa

Detalles Bibliográficos
Autores principales: Bauer, Denis C, Buske, Fabian A, Bailey, Timothy L
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2912886/
https://www.ncbi.nlm.nih.gov/pubmed/20594356
http://dx.doi.org/10.1186/1471-2105-11-366
_version_ 1782184643618930688
author Bauer, Denis C
Buske, Fabian A
Bailey, Timothy L
author_facet Bauer, Denis C
Buske, Fabian A
Bailey, Timothy L
author_sort Bauer, Denis C
collection PubMed
description BACKGROUND: Quantitative models for transcriptional regulation have shown great promise for advancing our understanding of the biological mechanisms underlying gene regulation. However, all of the models to date assume a transcription factor (TF) to have either activating or repressing function towards all the genes it is regulating. RESULTS: In this paper we demonstrate, on the example of the developmental gene network in D. melanogaster, that the data-fit can be improved by up to 40% if the model is allowing certain TFs to have dual function, that is, acting as activator for some genes and as repressor for others. We demonstrate that the improvement is not due to additional flexibility in the model but rather derived from the data itself. We also found no evidence for the involvement of other known site-specific TFs in regulating this network. Finally, we propose SUMOylation as a candidate biological mechanism allowing TFs to switch their role when a small ubiquitin-like modifier (SUMO) is covalently attached to the TF. We strengthen this hypothesis by demonstrating that the TFs predicted to have dual function also contain the known SUMO consensus motif, while TFs predicted to have only one role lack this motif. CONCLUSIONS: We argue that a SUMOylation-dependent mechanism allowing TFs to have dual function represents a promising area for further research and might be another step towards uncovering the biological mechanisms underlying transcriptional regulation.
format Text
id pubmed-2912886
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-29128862010-07-31 Dual-functioning transcription factors in the developmental gene network of Drosophila melanogaster Bauer, Denis C Buske, Fabian A Bailey, Timothy L BMC Bioinformatics Research Article BACKGROUND: Quantitative models for transcriptional regulation have shown great promise for advancing our understanding of the biological mechanisms underlying gene regulation. However, all of the models to date assume a transcription factor (TF) to have either activating or repressing function towards all the genes it is regulating. RESULTS: In this paper we demonstrate, on the example of the developmental gene network in D. melanogaster, that the data-fit can be improved by up to 40% if the model is allowing certain TFs to have dual function, that is, acting as activator for some genes and as repressor for others. We demonstrate that the improvement is not due to additional flexibility in the model but rather derived from the data itself. We also found no evidence for the involvement of other known site-specific TFs in regulating this network. Finally, we propose SUMOylation as a candidate biological mechanism allowing TFs to switch their role when a small ubiquitin-like modifier (SUMO) is covalently attached to the TF. We strengthen this hypothesis by demonstrating that the TFs predicted to have dual function also contain the known SUMO consensus motif, while TFs predicted to have only one role lack this motif. CONCLUSIONS: We argue that a SUMOylation-dependent mechanism allowing TFs to have dual function represents a promising area for further research and might be another step towards uncovering the biological mechanisms underlying transcriptional regulation. BioMed Central 2010-07-02 /pmc/articles/PMC2912886/ /pubmed/20594356 http://dx.doi.org/10.1186/1471-2105-11-366 Text en Copyright ©2010 Bauer et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Bauer, Denis C
Buske, Fabian A
Bailey, Timothy L
Dual-functioning transcription factors in the developmental gene network of Drosophila melanogaster
title Dual-functioning transcription factors in the developmental gene network of Drosophila melanogaster
title_full Dual-functioning transcription factors in the developmental gene network of Drosophila melanogaster
title_fullStr Dual-functioning transcription factors in the developmental gene network of Drosophila melanogaster
title_full_unstemmed Dual-functioning transcription factors in the developmental gene network of Drosophila melanogaster
title_short Dual-functioning transcription factors in the developmental gene network of Drosophila melanogaster
title_sort dual-functioning transcription factors in the developmental gene network of drosophila melanogaster
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2912886/
https://www.ncbi.nlm.nih.gov/pubmed/20594356
http://dx.doi.org/10.1186/1471-2105-11-366
work_keys_str_mv AT bauerdenisc dualfunctioningtranscriptionfactorsinthedevelopmentalgenenetworkofdrosophilamelanogaster
AT buskefabiana dualfunctioningtranscriptionfactorsinthedevelopmentalgenenetworkofdrosophilamelanogaster
AT baileytimothyl dualfunctioningtranscriptionfactorsinthedevelopmentalgenenetworkofdrosophilamelanogaster