Cargando…

An open source multistep model to predict mutagenicity from statistical analysis and relevant structural alerts

BACKGROUND: Mutagenicity is the capability of a substance to cause genetic mutations. This property is of high public concern because it has a close relationship with carcinogenicity and potentially with reproductive toxicity. Experimentally, mutagenicity can be assessed by the Ames test on Salmonel...

Descripción completa

Detalles Bibliográficos
Autores principales: Ferrari, Thomas, Gini, Giuseppina
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2913329/
https://www.ncbi.nlm.nih.gov/pubmed/20678181
http://dx.doi.org/10.1186/1752-153X-4-S1-S2
_version_ 1782184666908852224
author Ferrari, Thomas
Gini, Giuseppina
author_facet Ferrari, Thomas
Gini, Giuseppina
author_sort Ferrari, Thomas
collection PubMed
description BACKGROUND: Mutagenicity is the capability of a substance to cause genetic mutations. This property is of high public concern because it has a close relationship with carcinogenicity and potentially with reproductive toxicity. Experimentally, mutagenicity can be assessed by the Ames test on Salmonella with an estimated experimental reproducibility of 85%; this intrinsic limitation of the in vitro test, along with the need for faster and cheaper alternatives, opens the road to other types of assessment methods, such as in silico structure-activity prediction models. A widely used method checks for the presence of known structural alerts for mutagenicity. However the presence of such alerts alone is not a definitive method to prove the mutagenicity of a compound towards Salmonella, since other parts of the molecule can influence and potentially change the classification. Hence statistically based methods will be proposed, with the final objective to obtain a cascade of modeling steps with custom-made properties, such as the reduction of false negatives. RESULTS: A cascade model has been developed and validated on a large public set of molecular structures and their associated Salmonella mutagenicity outcome. The first step consists in the derivation of a statistical model and mutagenicity prediction, followed by further checks for specific structural alerts in the "safe" subset of the prediction outcome space. In terms of accuracy (i.e., overall correct predictions of both negative and positives), the obtained model approached the 85% reproducibility of the experimental mutagenicity Ames test. CONCLUSIONS: The model and the documentation for regulatory purposes are freely available on the CAESAR website. The input is simply a file of molecular structures and the output is the classification result.
format Text
id pubmed-2913329
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-29133292010-08-02 An open source multistep model to predict mutagenicity from statistical analysis and relevant structural alerts Ferrari, Thomas Gini, Giuseppina Chem Cent J Proceedings BACKGROUND: Mutagenicity is the capability of a substance to cause genetic mutations. This property is of high public concern because it has a close relationship with carcinogenicity and potentially with reproductive toxicity. Experimentally, mutagenicity can be assessed by the Ames test on Salmonella with an estimated experimental reproducibility of 85%; this intrinsic limitation of the in vitro test, along with the need for faster and cheaper alternatives, opens the road to other types of assessment methods, such as in silico structure-activity prediction models. A widely used method checks for the presence of known structural alerts for mutagenicity. However the presence of such alerts alone is not a definitive method to prove the mutagenicity of a compound towards Salmonella, since other parts of the molecule can influence and potentially change the classification. Hence statistically based methods will be proposed, with the final objective to obtain a cascade of modeling steps with custom-made properties, such as the reduction of false negatives. RESULTS: A cascade model has been developed and validated on a large public set of molecular structures and their associated Salmonella mutagenicity outcome. The first step consists in the derivation of a statistical model and mutagenicity prediction, followed by further checks for specific structural alerts in the "safe" subset of the prediction outcome space. In terms of accuracy (i.e., overall correct predictions of both negative and positives), the obtained model approached the 85% reproducibility of the experimental mutagenicity Ames test. CONCLUSIONS: The model and the documentation for regulatory purposes are freely available on the CAESAR website. The input is simply a file of molecular structures and the output is the classification result. BioMed Central 2010-07-29 /pmc/articles/PMC2913329/ /pubmed/20678181 http://dx.doi.org/10.1186/1752-153X-4-S1-S2 Text en Copyright ©2010 Ferrari and Gini; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Proceedings
Ferrari, Thomas
Gini, Giuseppina
An open source multistep model to predict mutagenicity from statistical analysis and relevant structural alerts
title An open source multistep model to predict mutagenicity from statistical analysis and relevant structural alerts
title_full An open source multistep model to predict mutagenicity from statistical analysis and relevant structural alerts
title_fullStr An open source multistep model to predict mutagenicity from statistical analysis and relevant structural alerts
title_full_unstemmed An open source multistep model to predict mutagenicity from statistical analysis and relevant structural alerts
title_short An open source multistep model to predict mutagenicity from statistical analysis and relevant structural alerts
title_sort open source multistep model to predict mutagenicity from statistical analysis and relevant structural alerts
topic Proceedings
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2913329/
https://www.ncbi.nlm.nih.gov/pubmed/20678181
http://dx.doi.org/10.1186/1752-153X-4-S1-S2
work_keys_str_mv AT ferrarithomas anopensourcemultistepmodeltopredictmutagenicityfromstatisticalanalysisandrelevantstructuralalerts
AT ginigiuseppina anopensourcemultistepmodeltopredictmutagenicityfromstatisticalanalysisandrelevantstructuralalerts
AT ferrarithomas opensourcemultistepmodeltopredictmutagenicityfromstatisticalanalysisandrelevantstructuralalerts
AT ginigiuseppina opensourcemultistepmodeltopredictmutagenicityfromstatisticalanalysisandrelevantstructuralalerts