Cargando…
Automated identification of pathways from quantitative genetic interaction data
High-throughput quantitative genetic interaction (GI) measurements provide detailed information regarding the structure of the underlying biological pathways by reporting on functional dependencies between genes. However, the analytical tools for fully exploiting such information lag behind the abil...
Autores principales: | Battle, Alexis, Jonikas, Martin C, Walter, Peter, Weissman, Jonathan S, Koller, Daphne |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
European Molecular Biology Organization
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2913392/ https://www.ncbi.nlm.nih.gov/pubmed/20531408 http://dx.doi.org/10.1038/msb.2010.27 |
Ejemplares similares
-
Sharing and Specificity of Co-expression Networks across 35 Human Tissues
por: Pierson, Emma, et al.
Publicado: (2015) -
Normalizing RNA-Sequencing Data by Modeling Hidden Covariates with Prior Knowledge
por: Mostafavi, Sara, et al.
Publicado: (2013) -
Quantitative Epistasis Analysis and Pathway Inference from Genetic Interaction Data
por: Phenix, Hilary, et al.
Publicado: (2011) -
A strategy for extracting and analyzing large-scale quantitative epistatic interaction data
por: Collins, Sean R, et al.
Publicado: (2006) -
Characterizing the genetic basis of transcriptome diversity through RNA-sequencing of 922 individuals
por: Battle, Alexis, et al.
Publicado: (2014)