Cargando…
Identification of protein-coding and non-coding RNA expression profiles in CD34(+ )and in stromal cells in refractory anemia with ringed sideroblasts
BACKGROUND: Myelodysplastic syndromes (MDS) are a group of clonal hematological disorders characterized by ineffective hematopoiesis with morphological evidence of marrow cell dysplasia resulting in peripheral blood cytopenia. Microarray technology has permitted a refined high-throughput mapping of...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2914047/ https://www.ncbi.nlm.nih.gov/pubmed/20633296 http://dx.doi.org/10.1186/1755-8794-3-30 |
Sumario: | BACKGROUND: Myelodysplastic syndromes (MDS) are a group of clonal hematological disorders characterized by ineffective hematopoiesis with morphological evidence of marrow cell dysplasia resulting in peripheral blood cytopenia. Microarray technology has permitted a refined high-throughput mapping of the transcriptional activity in the human genome. Non-coding RNAs (ncRNAs) transcribed from intronic regions of genes are involved in a number of processes related to post-transcriptional control of gene expression, and in the regulation of exon-skipping and intron retention. Characterization of ncRNAs in progenitor cells and stromal cells of MDS patients could be strategic for understanding gene expression regulation in this disease. METHODS: In this study, gene expression profiles of CD34(+ )cells of 4 patients with MDS of refractory anemia with ringed sideroblasts (RARS) subgroup and stromal cells of 3 patients with MDS-RARS were compared with healthy individuals using 44 k combined intron-exon oligoarrays, which included probes for exons of protein-coding genes, and for non-coding RNAs transcribed from intronic regions in either the sense or antisense strands. Real-time RT-PCR was performed to confirm the expression levels of selected transcripts. RESULTS: In CD34(+ )cells of MDS-RARS patients, 216 genes were significantly differentially expressed (q-value ≤ 0.01) in comparison to healthy individuals, of which 65 (30%) were non-coding transcripts. In stromal cells of MDS-RARS, 12 genes were significantly differentially expressed (q-value ≤ 0.05) in comparison to healthy individuals, of which 3 (25%) were non-coding transcripts. CONCLUSIONS: These results demonstrated, for the first time, the differential ncRNA expression profile between MDS-RARS and healthy individuals, in CD34(+ )cells and stromal cells, suggesting that ncRNAs may play an important role during the development of myelodysplastic syndromes. |
---|