Cargando…
Uncovering packaging features of co-regulated modules based on human protein interaction and transcriptional regulatory networks
BACKGROUND: Network co-regulated modules are believed to have the functionality of packaging multiple biological entities, and can thus be assumed to coordinate many biological functions in their network neighbouring regions. RESULTS: Here, we weighted edges of a human protein interaction network an...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2914056/ https://www.ncbi.nlm.nih.gov/pubmed/20649980 http://dx.doi.org/10.1186/1471-2105-11-392 |
Sumario: | BACKGROUND: Network co-regulated modules are believed to have the functionality of packaging multiple biological entities, and can thus be assumed to coordinate many biological functions in their network neighbouring regions. RESULTS: Here, we weighted edges of a human protein interaction network and a transcriptional regulatory network to construct an integrated network, and introduce a probabilistic model and a bipartite graph framework to exploit human co-regulated modules and uncover their specific features in packaging different biological entities (genes, protein complexes or metabolic pathways). Finally, we identified 96 human co-regulated modules based on this method, and evaluate its effectiveness by comparing it with four other methods. CONCLUSIONS: Dysfunctions in co-regulated interactions often occur in the development of cancer. Therefore, we focussed on an example co-regulated module and found that it could integrate a number of cancer-related genes. This was extended to causal dysfunctions of some complexes maintained by several physically interacting proteins, thus coordinating several metabolic pathways that directly underlie cancer. |
---|