Cargando…
Parameter inference for discretely observed stochastic kinetic models using stochastic gradient descent
BACKGROUND: Stochastic effects can be important for the behavior of processes involving small population numbers, so the study of stochastic models has become an important topic in the burgeoning field of computational systems biology. However analysis techniques for stochastic models have tended to...
Autores principales: | Wang, Yuanfeng, Christley, Scott, Mjolsness, Eric, Xie, Xiaohui |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2914651/ https://www.ncbi.nlm.nih.gov/pubmed/20663171 http://dx.doi.org/10.1186/1752-0509-4-99 |
Ejemplares similares
-
Stochastic gradient descent for optimization for nuclear systems
por: Williams, Austin, et al.
Publicado: (2023) -
Discrete Stochastic Optimization for Public Health Interventions with Constraints
por: Li, Zewei, et al.
Publicado: (2022) -
Pangenome graph layout by Path-Guided Stochastic Gradient Descent
por: Heumos, Simon, et al.
Publicado: (2023) -
Patterns of Mesenchymal Condensation in a Multiscale, Discrete Stochastic Model
por: Christley, Scott, et al.
Publicado: (2007) -
Efficient simulation of stochastic chemical kinetics with the Stochastic
Bulirsch-Stoer extrapolation method
por: Székely, Tamás, et al.
Publicado: (2014)