Cargando…

The biomechanical analysis of three plating fixation systems for periprosthetic femoral fracture near the tip of a total hip arthroplasty

BACKGROUND: A variety of techniques are available for fixation of femoral shaft fractures following total hip arthroplasty. The optimal surgical repair method still remains a point of controversy in the literature. However, few studies have quantified the performance of such repair constructs. This...

Descripción completa

Detalles Bibliográficos
Autores principales: Lever, James P, Zdero, Rad, Nousiainen, Markku T, Waddell, James P, Schemitsch, Emil H
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2914750/
https://www.ncbi.nlm.nih.gov/pubmed/20653962
http://dx.doi.org/10.1186/1749-799X-5-45
Descripción
Sumario:BACKGROUND: A variety of techniques are available for fixation of femoral shaft fractures following total hip arthroplasty. The optimal surgical repair method still remains a point of controversy in the literature. However, few studies have quantified the performance of such repair constructs. This study biomechanically examined 3 different screw-plate and cable-plate systems for fixation of periprosthetic femoral fractures near the tip of a total hip arthroplasty. METHODS: Twelve pairs of human cadaveric femurs were utilized. Each left femur was prepared for the cemented insertion of the femoral component of a total hip implant. Femoral fractures were created in the femurs and subsequently repaired with Construct A (Zimmer Cable Ready System), Construct B (AO Cable-Plate System), or Construct C (Dall-Miles Cable Grip System). Right femora served as matched intact controls. Axial, torsional, and four-point bending tests were performed to obtain stiffness values. RESULTS: All repair systems showed 3.08 to 5.33 times greater axial stiffness over intact control specimens. Four-point normalized bending (0.69 to 0.85) and normalized torsional (0.55 to 0.69) stiffnesses were lower than intact controls for most comparisons. Screw-plates provided either greater or equal stiffness compared to cable-plates in almost all cases. There were no statistical differences between plating systems A, B, or C when compared to each other (p > 0.05). CONCLUSIONS: Screw-plate systems provide more optimal mechanical stability than cable-plate systems for periprosthetic femur fractures near the tip of a total hip arthroplasty.