Cargando…
An endogenous F-box protein regulates ARGONAUTE1 in Arabidopsis thaliana
ARGONAUTE1 (AGO1) mediates microRNA- and small interfering RNA-directed posttranscriptional gene silencing in Arabidopsis thaliana. Mutant alleles of SQUINT (SQN) slightly reduce AGO1 activity and have weak effects on shoot morphology. A screen for mutations that suppress the sqn phenotype produced...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2914764/ https://www.ncbi.nlm.nih.gov/pubmed/20624295 http://dx.doi.org/10.1186/1758-907X-1-15 |
Sumario: | ARGONAUTE1 (AGO1) mediates microRNA- and small interfering RNA-directed posttranscriptional gene silencing in Arabidopsis thaliana. Mutant alleles of SQUINT (SQN) slightly reduce AGO1 activity and have weak effects on shoot morphology. A screen for mutations that suppress the sqn phenotype produced loss-of-function mutations in the F-box gene FBW2. Mutations in FBW2 not only suppress sqn but also suppress many of the developmental phenotypes of weak, but not null, alleles of AGO1 by increasing AGO1 protein levels. Conversely, over-expression of FBW2 decreases the abundance of the AGO1 protein but not AGO1 messenger RNA, further indicating that FBW2 regulates AGO1 protein levels. fbw2 mutants have no obvious morphological phenotype, but display a reduced sensitivity to abscisic acid (ABA) that can be attributed to increased AGO1 activity. Our results indicate that FBW2 is a novel negative regulator of AGO1 and suggest that it plays a role in ABA signalling and/or response. |
---|