Cargando…
A statistical method (cross-validation) for bone loss region detection after spaceflight
Astronauts experience bone loss after the long spaceflight missions. Identifying specific regions that undergo the greatest losses (e.g. the proximal femur) could reveal information about the processes of bone loss in disuse and disease. Methods for detecting such regions, however, remains an open p...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2917547/ https://www.ncbi.nlm.nih.gov/pubmed/20632144 http://dx.doi.org/10.1007/s13246-010-0024-6 |
_version_ | 1782185077950644224 |
---|---|
author | Zhao, Qian Li, Wenjun Li, Caixia Chu, Philip W. Kornak, John Lang, Thomas F. Fang, Jiqian Lu, Ying |
author_facet | Zhao, Qian Li, Wenjun Li, Caixia Chu, Philip W. Kornak, John Lang, Thomas F. Fang, Jiqian Lu, Ying |
author_sort | Zhao, Qian |
collection | PubMed |
description | Astronauts experience bone loss after the long spaceflight missions. Identifying specific regions that undergo the greatest losses (e.g. the proximal femur) could reveal information about the processes of bone loss in disuse and disease. Methods for detecting such regions, however, remains an open problem. This paper focuses on statistical methods to detect such regions. We perform statistical parametric mapping to get t-maps of changes in images, and propose a new cross-validation method to select an optimum suprathreshold for forming clusters of pixels. Once these candidate clusters are formed, we use permutation testing of longitudinal labels to derive significant changes. |
format | Text |
id | pubmed-2917547 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Springer Netherlands |
record_format | MEDLINE/PubMed |
spelling | pubmed-29175472010-08-20 A statistical method (cross-validation) for bone loss region detection after spaceflight Zhao, Qian Li, Wenjun Li, Caixia Chu, Philip W. Kornak, John Lang, Thomas F. Fang, Jiqian Lu, Ying Australas Phys Eng Sci Med Scientific Paper Astronauts experience bone loss after the long spaceflight missions. Identifying specific regions that undergo the greatest losses (e.g. the proximal femur) could reveal information about the processes of bone loss in disuse and disease. Methods for detecting such regions, however, remains an open problem. This paper focuses on statistical methods to detect such regions. We perform statistical parametric mapping to get t-maps of changes in images, and propose a new cross-validation method to select an optimum suprathreshold for forming clusters of pixels. Once these candidate clusters are formed, we use permutation testing of longitudinal labels to derive significant changes. Springer Netherlands 2010-07-15 2010 /pmc/articles/PMC2917547/ /pubmed/20632144 http://dx.doi.org/10.1007/s13246-010-0024-6 Text en © The Author(s) 2010 https://creativecommons.org/licenses/by-nc/4.0/ This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. |
spellingShingle | Scientific Paper Zhao, Qian Li, Wenjun Li, Caixia Chu, Philip W. Kornak, John Lang, Thomas F. Fang, Jiqian Lu, Ying A statistical method (cross-validation) for bone loss region detection after spaceflight |
title | A statistical method (cross-validation) for bone loss region detection after spaceflight |
title_full | A statistical method (cross-validation) for bone loss region detection after spaceflight |
title_fullStr | A statistical method (cross-validation) for bone loss region detection after spaceflight |
title_full_unstemmed | A statistical method (cross-validation) for bone loss region detection after spaceflight |
title_short | A statistical method (cross-validation) for bone loss region detection after spaceflight |
title_sort | statistical method (cross-validation) for bone loss region detection after spaceflight |
topic | Scientific Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2917547/ https://www.ncbi.nlm.nih.gov/pubmed/20632144 http://dx.doi.org/10.1007/s13246-010-0024-6 |
work_keys_str_mv | AT zhaoqian astatisticalmethodcrossvalidationforbonelossregiondetectionafterspaceflight AT liwenjun astatisticalmethodcrossvalidationforbonelossregiondetectionafterspaceflight AT licaixia astatisticalmethodcrossvalidationforbonelossregiondetectionafterspaceflight AT chuphilipw astatisticalmethodcrossvalidationforbonelossregiondetectionafterspaceflight AT kornakjohn astatisticalmethodcrossvalidationforbonelossregiondetectionafterspaceflight AT langthomasf astatisticalmethodcrossvalidationforbonelossregiondetectionafterspaceflight AT fangjiqian astatisticalmethodcrossvalidationforbonelossregiondetectionafterspaceflight AT luying astatisticalmethodcrossvalidationforbonelossregiondetectionafterspaceflight AT zhaoqian statisticalmethodcrossvalidationforbonelossregiondetectionafterspaceflight AT liwenjun statisticalmethodcrossvalidationforbonelossregiondetectionafterspaceflight AT licaixia statisticalmethodcrossvalidationforbonelossregiondetectionafterspaceflight AT chuphilipw statisticalmethodcrossvalidationforbonelossregiondetectionafterspaceflight AT kornakjohn statisticalmethodcrossvalidationforbonelossregiondetectionafterspaceflight AT langthomasf statisticalmethodcrossvalidationforbonelossregiondetectionafterspaceflight AT fangjiqian statisticalmethodcrossvalidationforbonelossregiondetectionafterspaceflight AT luying statisticalmethodcrossvalidationforbonelossregiondetectionafterspaceflight |