Cargando…

A statistical method (cross-validation) for bone loss region detection after spaceflight

Astronauts experience bone loss after the long spaceflight missions. Identifying specific regions that undergo the greatest losses (e.g. the proximal femur) could reveal information about the processes of bone loss in disuse and disease. Methods for detecting such regions, however, remains an open p...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Qian, Li, Wenjun, Li, Caixia, Chu, Philip W., Kornak, John, Lang, Thomas F., Fang, Jiqian, Lu, Ying
Formato: Texto
Lenguaje:English
Publicado: Springer Netherlands 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2917547/
https://www.ncbi.nlm.nih.gov/pubmed/20632144
http://dx.doi.org/10.1007/s13246-010-0024-6
_version_ 1782185077950644224
author Zhao, Qian
Li, Wenjun
Li, Caixia
Chu, Philip W.
Kornak, John
Lang, Thomas F.
Fang, Jiqian
Lu, Ying
author_facet Zhao, Qian
Li, Wenjun
Li, Caixia
Chu, Philip W.
Kornak, John
Lang, Thomas F.
Fang, Jiqian
Lu, Ying
author_sort Zhao, Qian
collection PubMed
description Astronauts experience bone loss after the long spaceflight missions. Identifying specific regions that undergo the greatest losses (e.g. the proximal femur) could reveal information about the processes of bone loss in disuse and disease. Methods for detecting such regions, however, remains an open problem. This paper focuses on statistical methods to detect such regions. We perform statistical parametric mapping to get t-maps of changes in images, and propose a new cross-validation method to select an optimum suprathreshold for forming clusters of pixels. Once these candidate clusters are formed, we use permutation testing of longitudinal labels to derive significant changes.
format Text
id pubmed-2917547
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher Springer Netherlands
record_format MEDLINE/PubMed
spelling pubmed-29175472010-08-20 A statistical method (cross-validation) for bone loss region detection after spaceflight Zhao, Qian Li, Wenjun Li, Caixia Chu, Philip W. Kornak, John Lang, Thomas F. Fang, Jiqian Lu, Ying Australas Phys Eng Sci Med Scientific Paper Astronauts experience bone loss after the long spaceflight missions. Identifying specific regions that undergo the greatest losses (e.g. the proximal femur) could reveal information about the processes of bone loss in disuse and disease. Methods for detecting such regions, however, remains an open problem. This paper focuses on statistical methods to detect such regions. We perform statistical parametric mapping to get t-maps of changes in images, and propose a new cross-validation method to select an optimum suprathreshold for forming clusters of pixels. Once these candidate clusters are formed, we use permutation testing of longitudinal labels to derive significant changes. Springer Netherlands 2010-07-15 2010 /pmc/articles/PMC2917547/ /pubmed/20632144 http://dx.doi.org/10.1007/s13246-010-0024-6 Text en © The Author(s) 2010 https://creativecommons.org/licenses/by-nc/4.0/ This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
spellingShingle Scientific Paper
Zhao, Qian
Li, Wenjun
Li, Caixia
Chu, Philip W.
Kornak, John
Lang, Thomas F.
Fang, Jiqian
Lu, Ying
A statistical method (cross-validation) for bone loss region detection after spaceflight
title A statistical method (cross-validation) for bone loss region detection after spaceflight
title_full A statistical method (cross-validation) for bone loss region detection after spaceflight
title_fullStr A statistical method (cross-validation) for bone loss region detection after spaceflight
title_full_unstemmed A statistical method (cross-validation) for bone loss region detection after spaceflight
title_short A statistical method (cross-validation) for bone loss region detection after spaceflight
title_sort statistical method (cross-validation) for bone loss region detection after spaceflight
topic Scientific Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2917547/
https://www.ncbi.nlm.nih.gov/pubmed/20632144
http://dx.doi.org/10.1007/s13246-010-0024-6
work_keys_str_mv AT zhaoqian astatisticalmethodcrossvalidationforbonelossregiondetectionafterspaceflight
AT liwenjun astatisticalmethodcrossvalidationforbonelossregiondetectionafterspaceflight
AT licaixia astatisticalmethodcrossvalidationforbonelossregiondetectionafterspaceflight
AT chuphilipw astatisticalmethodcrossvalidationforbonelossregiondetectionafterspaceflight
AT kornakjohn astatisticalmethodcrossvalidationforbonelossregiondetectionafterspaceflight
AT langthomasf astatisticalmethodcrossvalidationforbonelossregiondetectionafterspaceflight
AT fangjiqian astatisticalmethodcrossvalidationforbonelossregiondetectionafterspaceflight
AT luying astatisticalmethodcrossvalidationforbonelossregiondetectionafterspaceflight
AT zhaoqian statisticalmethodcrossvalidationforbonelossregiondetectionafterspaceflight
AT liwenjun statisticalmethodcrossvalidationforbonelossregiondetectionafterspaceflight
AT licaixia statisticalmethodcrossvalidationforbonelossregiondetectionafterspaceflight
AT chuphilipw statisticalmethodcrossvalidationforbonelossregiondetectionafterspaceflight
AT kornakjohn statisticalmethodcrossvalidationforbonelossregiondetectionafterspaceflight
AT langthomasf statisticalmethodcrossvalidationforbonelossregiondetectionafterspaceflight
AT fangjiqian statisticalmethodcrossvalidationforbonelossregiondetectionafterspaceflight
AT luying statisticalmethodcrossvalidationforbonelossregiondetectionafterspaceflight