Cargando…
Branched Tricarboxylic Acid Metabolism in Plasmodium falciparum
A central hub of carbon metabolism is the tricarboxylic acid (TCA) cycle1, which serves to connect the processes of glycolysis, gluconeogenesis, respiration, amino acid synthesis and other biosynthetic pathways. The protozoan intracellular malaria parasites (Plasmodium spp.), however, have long been...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2917841/ https://www.ncbi.nlm.nih.gov/pubmed/20686576 http://dx.doi.org/10.1038/nature09301 |
_version_ | 1782185089169358848 |
---|---|
author | Olszewski, Kellen L. Mather, Michael W. Morrisey, Joanne M. Garcia, Benjamin A. Vaidya, Akhil B. Rabinowitz, Joshua D. Llinás, Manuel |
author_facet | Olszewski, Kellen L. Mather, Michael W. Morrisey, Joanne M. Garcia, Benjamin A. Vaidya, Akhil B. Rabinowitz, Joshua D. Llinás, Manuel |
author_sort | Olszewski, Kellen L. |
collection | PubMed |
description | A central hub of carbon metabolism is the tricarboxylic acid (TCA) cycle1, which serves to connect the processes of glycolysis, gluconeogenesis, respiration, amino acid synthesis and other biosynthetic pathways. The protozoan intracellular malaria parasites (Plasmodium spp.), however, have long been suspected of possessing a significantly streamlined carbon metabolic network in which TCA metabolism plays a minor role2. Blood-stage Plasmodium parasites rely almost entirely on glucose fermentation for energy and consume minimal amounts of oxygen3, yet the parasite genome encodes all of the enzymes necessary for a complete TCA cycle4. By tracing (13)C-labeled compounds using mass spectrometry5 we show that TCA metabolism in the human malaria parasite P. falciparum is largely disconnected from glycolysis and is organized along a fundamentally different architecture than the canonical textbook pathway. We find that this pathway is not cyclic but rather a branched structure in which the major carbon sources are the amino acids glutamate and glutamine. As a consequence of this branched architecture, several reactions must run in the reverse of the standard direction thereby generating two-carbon units in the form of acetyl-coenzyme A (acetyl-CoA). We further show that glutamine-derived acetyl-CoA is used for histone acetylation while glucose-derived acetyl-CoA is used to acetylate aminosugars. Thus the parasite has evolved two independent acetyl-CoA-production mechanisms with different biological functions. These results significantly clarify our understanding of the Plasmodium metabolic network and highlight the ability of altered variants of central carbon metabolism to arise in response to unique environments. |
format | Text |
id | pubmed-2917841 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
record_format | MEDLINE/PubMed |
spelling | pubmed-29178412011-02-01 Branched Tricarboxylic Acid Metabolism in Plasmodium falciparum Olszewski, Kellen L. Mather, Michael W. Morrisey, Joanne M. Garcia, Benjamin A. Vaidya, Akhil B. Rabinowitz, Joshua D. Llinás, Manuel Nature Article A central hub of carbon metabolism is the tricarboxylic acid (TCA) cycle1, which serves to connect the processes of glycolysis, gluconeogenesis, respiration, amino acid synthesis and other biosynthetic pathways. The protozoan intracellular malaria parasites (Plasmodium spp.), however, have long been suspected of possessing a significantly streamlined carbon metabolic network in which TCA metabolism plays a minor role2. Blood-stage Plasmodium parasites rely almost entirely on glucose fermentation for energy and consume minimal amounts of oxygen3, yet the parasite genome encodes all of the enzymes necessary for a complete TCA cycle4. By tracing (13)C-labeled compounds using mass spectrometry5 we show that TCA metabolism in the human malaria parasite P. falciparum is largely disconnected from glycolysis and is organized along a fundamentally different architecture than the canonical textbook pathway. We find that this pathway is not cyclic but rather a branched structure in which the major carbon sources are the amino acids glutamate and glutamine. As a consequence of this branched architecture, several reactions must run in the reverse of the standard direction thereby generating two-carbon units in the form of acetyl-coenzyme A (acetyl-CoA). We further show that glutamine-derived acetyl-CoA is used for histone acetylation while glucose-derived acetyl-CoA is used to acetylate aminosugars. Thus the parasite has evolved two independent acetyl-CoA-production mechanisms with different biological functions. These results significantly clarify our understanding of the Plasmodium metabolic network and highlight the ability of altered variants of central carbon metabolism to arise in response to unique environments. 2010-08-05 /pmc/articles/PMC2917841/ /pubmed/20686576 http://dx.doi.org/10.1038/nature09301 Text en Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Olszewski, Kellen L. Mather, Michael W. Morrisey, Joanne M. Garcia, Benjamin A. Vaidya, Akhil B. Rabinowitz, Joshua D. Llinás, Manuel Branched Tricarboxylic Acid Metabolism in Plasmodium falciparum |
title | Branched Tricarboxylic Acid Metabolism in Plasmodium falciparum |
title_full | Branched Tricarboxylic Acid Metabolism in Plasmodium falciparum |
title_fullStr | Branched Tricarboxylic Acid Metabolism in Plasmodium falciparum |
title_full_unstemmed | Branched Tricarboxylic Acid Metabolism in Plasmodium falciparum |
title_short | Branched Tricarboxylic Acid Metabolism in Plasmodium falciparum |
title_sort | branched tricarboxylic acid metabolism in plasmodium falciparum |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2917841/ https://www.ncbi.nlm.nih.gov/pubmed/20686576 http://dx.doi.org/10.1038/nature09301 |
work_keys_str_mv | AT olszewskikellenl branchedtricarboxylicacidmetabolisminplasmodiumfalciparum AT mathermichaelw branchedtricarboxylicacidmetabolisminplasmodiumfalciparum AT morriseyjoannem branchedtricarboxylicacidmetabolisminplasmodiumfalciparum AT garciabenjamina branchedtricarboxylicacidmetabolisminplasmodiumfalciparum AT vaidyaakhilb branchedtricarboxylicacidmetabolisminplasmodiumfalciparum AT rabinowitzjoshuad branchedtricarboxylicacidmetabolisminplasmodiumfalciparum AT llinasmanuel branchedtricarboxylicacidmetabolisminplasmodiumfalciparum |