Cargando…
LSOSS: Detection of Cancer Outlier Differential Gene Expression
Detection of differential gene expression using microarray technology has received considerable interest in cancer research studies. Recently, many researchers discovered that oncogenes may be activated in some but not all samples in a given disease group. The existing statistical tools for detectin...
Autores principales: | Wang, Yupeng, Rekaya, Romdhane |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Libertas Academica
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2918352/ https://www.ncbi.nlm.nih.gov/pubmed/20703321 |
Ejemplares similares
-
Identification of differentially expressed genes by means of outlier detection
por: Irigoien, Itziar, et al.
Publicado: (2018) -
A jackknife-like method for classification and uncertainty assessment of multi-category tumor samples using gene expression information
por: Zhang, Wensheng, et al.
Publicado: (2010) -
Comparison of Two Output-Coding Strategies for Multi-Class Tumor Classification Using Gene Expression Data and Latent Variable Model as Binary Classifier
por: Joseph, Sandeep J., et al.
Publicado: (2010) -
Prediction of heterogeneous differential genes by detecting outliers to a Gaussian tight cluster
por: Yang, Zihua, et al.
Publicado: (2013) -
A Comprehensive Analysis of Gene Expression Evolution Between Humans and Mice
por: Wang, Yupeng, et al.
Publicado: (2009)