Cargando…

Quantitative comparison of lipoprotein fractions derived from human plasma and serum by liquid chromatography-tandem mass spectrometry

BACKGROUND: Lipoproteins are complex, globular molecules which play essential roles in the transport and metabolism of cholesterol. Their implication in the development of cardiovascular diseases, such as atherosclerosis, has sustained a great deal of interest in these particles. Their various funct...

Descripción completa

Detalles Bibliográficos
Autores principales: Collins, Lisamarie A, Olivier, Michael
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2918550/
https://www.ncbi.nlm.nih.gov/pubmed/20670422
http://dx.doi.org/10.1186/1477-5956-8-42
Descripción
Sumario:BACKGROUND: Lipoproteins are complex, globular molecules which play essential roles in the transport and metabolism of cholesterol. Their implication in the development of cardiovascular diseases, such as atherosclerosis, has sustained a great deal of interest in these particles. Their various functions, and their contribution to the development of atherosclerosis, are often attributed to their protein constituents, which vary greatly among the different lipoprotein classes. Recent advances in the field of mass spectrometry have provided insight into the array of proteins associated with low-density lipoproteins (LDLs) and, even more so, with high-density lipoproteins (HDLs). Plasma and serum are the most commonly used samples for the analysis of lipoproteins. Although these lipoprotein sources are unique, it was our goal to determine whether or not their inherent differences would ultimately affect a quantitative analysis of the LDL and HDL proteomes. To this end, we isolated LDL and HDL fractions with fast protein liquid chromatography-size exclusion chromatography (FPLC-SEC) from both human plasma and serum samples from the same individuals. After delipidating these samples, we performed a quantitative proteomic analysis to compare the lipoprotein-associated proteins derived from both plasma and serum. RESULTS: Although the primary differences between the samples are found in fibrinogen proteins which are removed from serum, it of interest to note that, with respect to LDL-associated proteins, apolipoproteinB-100 was found at significantly higher levels in serum samples. Complement component 3 was found at significantly higher levels in serum-derived HDL fractions. Both of these proteins are known LDL- and HDL-associated proteins, respectively. CONCLUSION: Overall, the results from our study indicate that both plasma and serum samples are equally suited for proteomic studies, and provide similar results. These findings are particularly important for studies profiling proteomic differences in lipoprotein particle composition in a variety of disease conditions, including cardiovascular disease.