Cargando…
Effects of hypoxic culture conditions on umbilical cord-derived human mesenchymal stem cells
Following cultivation of distinct mesenchymal stem cell (MSC) populations derived from human umbilical cord under hypoxic conditions (between 1.5% to 5% oxygen (O(2))) revealed a 2- to 3-fold reduced oxygen consumption rate as compared to the same cultures at normoxic oxygen levels (21% O(2)). A sim...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2918620/ https://www.ncbi.nlm.nih.gov/pubmed/20637101 http://dx.doi.org/10.1186/1478-811X-8-18 |
Sumario: | Following cultivation of distinct mesenchymal stem cell (MSC) populations derived from human umbilical cord under hypoxic conditions (between 1.5% to 5% oxygen (O(2))) revealed a 2- to 3-fold reduced oxygen consumption rate as compared to the same cultures at normoxic oxygen levels (21% O(2)). A simultaneous measurement of dissolved oxygen within the culture media from 4 different MSC donors ranged from 15 μmol/L at 1.5% O(2 )to 196 μmol/L at normoxic 21% O(2). The proliferative capacity of the different hypoxic MSC populations was elevated as compared to the normoxic culture. This effect was paralleled by a significantly reduced cell damage or cell death under hypoxic conditions as evaluated by the cellular release of LDH whereby the measurement of caspase3/7 activity revealed little if any differences in apoptotic cell death between the various cultures. The MSC culture under hypoxic conditions was associated with the induction of hypoxia-inducing factor-alpha (HIF-1α) and an elevated expression of energy metabolism-associated genes including GLUT-1, LDH and PDK1. Concomitantly, a significantly enhanced glucose consumption and a corresponding lactate production could be observed in the hypoxic MSC cultures suggesting an altered metabolism of these human stem cells within the hypoxic environment. |
---|