Cargando…

MicroRNA profiling in human diploid fibroblasts uncovers miR-519 role in replicative senescence

MicroRNAs (miRNAs) are short non-coding RNAs that regulate diverse biological processes by controlling the pattern of expressed proteins. In mammalian cells, miRNAs partially complement their target sequences leading to mRNA degradation and/or decreased mRNA translation. Here, we have analyzed trans...

Descripción completa

Detalles Bibliográficos
Autores principales: Marasa, Bernard S., Srikantan, Subramanya, Martindale, Jennifer L., Kim, Mihee M., Lee, Eun Kyung, Gorospe, Myriam, Abdelmohsen, Kotb
Formato: Texto
Lenguaje:English
Publicado: Impact Journals LLC 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2919253/
https://www.ncbi.nlm.nih.gov/pubmed/20606251
Descripción
Sumario:MicroRNAs (miRNAs) are short non-coding RNAs that regulate diverse biological processes by controlling the pattern of expressed proteins. In mammalian cells, miRNAs partially complement their target sequences leading to mRNA degradation and/or decreased mRNA translation. Here, we have analyzed transcriptome-wide changes in miRNAs in senescent relative to early-passage WI-38 human diploid fibroblasts (HDFs). Among the miRNAs downregulated with senescence were members of the let-7 family, while upregulated miRNAs included miR-1204, miR-663 and miR-519. miR-519 was recently found to reduce tumor growth at least in part by lowering the abundance of the RNA-binding protein HuR. Overexpression of miR-519a in either WI-38 or human cervical carcinoma HeLa cells triggered senescence, as measured by monitoring β-galactosidase activity and other senescence markers. These data suggest that miR-519 can suppress tumor growth by triggering senescence and that miR-519 elicits these actions by repressing HuR expression.