Cargando…
Bradykinin and adenosine receptors mediate desflurane induced postconditioning in human myocardium: role of reactive oxygen species
BACKGROUND: Desflurane during early reperfusion has been shown to postcondition human myocardium, in vitro. We investigated the role of adenosine and bradykinin receptors, and generation of radical oxygen species in desflurane-induced postconditioning in human myocardium. METHODS: We recorded isomet...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2919536/ https://www.ncbi.nlm.nih.gov/pubmed/20670410 http://dx.doi.org/10.1186/1471-2253-10-12 |
_version_ | 1782185199652569088 |
---|---|
author | Lemoine, Sandrine Buléon, Clément Rouet, René Ivascau, Calin Babatasi, Gérard Massetti, Massimo Gérard, Jean-Louis Hanouz, Jean-Luc |
author_facet | Lemoine, Sandrine Buléon, Clément Rouet, René Ivascau, Calin Babatasi, Gérard Massetti, Massimo Gérard, Jean-Louis Hanouz, Jean-Luc |
author_sort | Lemoine, Sandrine |
collection | PubMed |
description | BACKGROUND: Desflurane during early reperfusion has been shown to postcondition human myocardium, in vitro. We investigated the role of adenosine and bradykinin receptors, and generation of radical oxygen species in desflurane-induced postconditioning in human myocardium. METHODS: We recorded isometric contraction of human right atrial trabeculae hanged in an oxygenated Tyrode's solution (34 degrees Celsius, stimulation frequency 1 Hz). After a 30-min hypoxic period, desflurane 6% was administered during the first 5 min of reoxygenation. Desflurane was administered alone or with pretreatment of N-mercaptopropionylglycine, a reactive oxygen species scavenger, 8-(p-Sulfophenyl)theophylline, an adenosine receptor antagonist, HOE140, a selective B2 bradykinin receptor antagonist. In separate groups, adenosine and bradykinin were administered during the first minutes of reoxygenation alone or in presence of N-mercaptopropionylglycine. The force of contraction of trabeculae was recorded continuously. Developed force at the end of a 60-min reoxygenation period was compared (mean ± standard deviation) between the groups by a variance analysis and post hoc test. RESULTS: Desflurane 6% (84 ± 6% of baseline) enhanced the recovery of force after 60-min of reoxygenation as compared to control group (51 ± 8% of baseline, P < 0.0001). N-mercaptopropionylglycine (54 ± 3% of baseline), 8-(p-Sulfophenyl)theophylline (62 ± 9% of baseline), HOE140 (58 ± 6% of baseline) abolished desflurane-induced postconditioning. Adenosine (80 ± 9% of baseline) and bradykinin (83 ± 4% of baseline) induced postconditioning (P < 0.0001 vs control), N-mercaptopropionylglycine abolished the beneficial effects of adenosine and bradykinin (54 ± 8 and 58 ± 5% of baseline, respectively). CONCLUSIONS: In vitro, desflurane-induced postconditioning depends on reactive oxygen species production, activation of adenosine and bradykinin B(2 )receptors. And, the cardioprotective effect of adenosine and bradykinin administered at the beginning of reoxygenation, was mediated, at least in part, through ROS production. |
format | Text |
id | pubmed-2919536 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-29195362010-08-11 Bradykinin and adenosine receptors mediate desflurane induced postconditioning in human myocardium: role of reactive oxygen species Lemoine, Sandrine Buléon, Clément Rouet, René Ivascau, Calin Babatasi, Gérard Massetti, Massimo Gérard, Jean-Louis Hanouz, Jean-Luc BMC Anesthesiol Research Article BACKGROUND: Desflurane during early reperfusion has been shown to postcondition human myocardium, in vitro. We investigated the role of adenosine and bradykinin receptors, and generation of radical oxygen species in desflurane-induced postconditioning in human myocardium. METHODS: We recorded isometric contraction of human right atrial trabeculae hanged in an oxygenated Tyrode's solution (34 degrees Celsius, stimulation frequency 1 Hz). After a 30-min hypoxic period, desflurane 6% was administered during the first 5 min of reoxygenation. Desflurane was administered alone or with pretreatment of N-mercaptopropionylglycine, a reactive oxygen species scavenger, 8-(p-Sulfophenyl)theophylline, an adenosine receptor antagonist, HOE140, a selective B2 bradykinin receptor antagonist. In separate groups, adenosine and bradykinin were administered during the first minutes of reoxygenation alone or in presence of N-mercaptopropionylglycine. The force of contraction of trabeculae was recorded continuously. Developed force at the end of a 60-min reoxygenation period was compared (mean ± standard deviation) between the groups by a variance analysis and post hoc test. RESULTS: Desflurane 6% (84 ± 6% of baseline) enhanced the recovery of force after 60-min of reoxygenation as compared to control group (51 ± 8% of baseline, P < 0.0001). N-mercaptopropionylglycine (54 ± 3% of baseline), 8-(p-Sulfophenyl)theophylline (62 ± 9% of baseline), HOE140 (58 ± 6% of baseline) abolished desflurane-induced postconditioning. Adenosine (80 ± 9% of baseline) and bradykinin (83 ± 4% of baseline) induced postconditioning (P < 0.0001 vs control), N-mercaptopropionylglycine abolished the beneficial effects of adenosine and bradykinin (54 ± 8 and 58 ± 5% of baseline, respectively). CONCLUSIONS: In vitro, desflurane-induced postconditioning depends on reactive oxygen species production, activation of adenosine and bradykinin B(2 )receptors. And, the cardioprotective effect of adenosine and bradykinin administered at the beginning of reoxygenation, was mediated, at least in part, through ROS production. BioMed Central 2010-07-29 /pmc/articles/PMC2919536/ /pubmed/20670410 http://dx.doi.org/10.1186/1471-2253-10-12 Text en Copyright ©2010 Lemoine et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Lemoine, Sandrine Buléon, Clément Rouet, René Ivascau, Calin Babatasi, Gérard Massetti, Massimo Gérard, Jean-Louis Hanouz, Jean-Luc Bradykinin and adenosine receptors mediate desflurane induced postconditioning in human myocardium: role of reactive oxygen species |
title | Bradykinin and adenosine receptors mediate desflurane induced postconditioning in human myocardium: role of reactive oxygen species |
title_full | Bradykinin and adenosine receptors mediate desflurane induced postconditioning in human myocardium: role of reactive oxygen species |
title_fullStr | Bradykinin and adenosine receptors mediate desflurane induced postconditioning in human myocardium: role of reactive oxygen species |
title_full_unstemmed | Bradykinin and adenosine receptors mediate desflurane induced postconditioning in human myocardium: role of reactive oxygen species |
title_short | Bradykinin and adenosine receptors mediate desflurane induced postconditioning in human myocardium: role of reactive oxygen species |
title_sort | bradykinin and adenosine receptors mediate desflurane induced postconditioning in human myocardium: role of reactive oxygen species |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2919536/ https://www.ncbi.nlm.nih.gov/pubmed/20670410 http://dx.doi.org/10.1186/1471-2253-10-12 |
work_keys_str_mv | AT lemoinesandrine bradykininandadenosinereceptorsmediatedesfluraneinducedpostconditioninginhumanmyocardiumroleofreactiveoxygenspecies AT buleonclement bradykininandadenosinereceptorsmediatedesfluraneinducedpostconditioninginhumanmyocardiumroleofreactiveoxygenspecies AT rouetrene bradykininandadenosinereceptorsmediatedesfluraneinducedpostconditioninginhumanmyocardiumroleofreactiveoxygenspecies AT ivascaucalin bradykininandadenosinereceptorsmediatedesfluraneinducedpostconditioninginhumanmyocardiumroleofreactiveoxygenspecies AT babatasigerard bradykininandadenosinereceptorsmediatedesfluraneinducedpostconditioninginhumanmyocardiumroleofreactiveoxygenspecies AT massettimassimo bradykininandadenosinereceptorsmediatedesfluraneinducedpostconditioninginhumanmyocardiumroleofreactiveoxygenspecies AT gerardjeanlouis bradykininandadenosinereceptorsmediatedesfluraneinducedpostconditioninginhumanmyocardiumroleofreactiveoxygenspecies AT hanouzjeanluc bradykininandadenosinereceptorsmediatedesfluraneinducedpostconditioninginhumanmyocardiumroleofreactiveoxygenspecies |