Cargando…
Crystallisation of Wild-Type and Variant Forms of a Recombinant Plant Enzyme β-d-Glucan Glucohydrolase from Barley (Hordeum vulgare L.) and Preliminary X-ray Analysis
Wild-type and variant crystals of a recombinant enzyme β-d-glucan glucohydrolase from barley (Hordeum vulgare L.) were obtained by macroseeding and cross-seeding with microcrystals obtained from native plant protein. Crystals grew to dimensions of up to 500 × 250 × 375 μm at 277 K in the hanging-dro...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2920565/ https://www.ncbi.nlm.nih.gov/pubmed/20717535 http://dx.doi.org/10.3390/ijms11072759 |
Sumario: | Wild-type and variant crystals of a recombinant enzyme β-d-glucan glucohydrolase from barley (Hordeum vulgare L.) were obtained by macroseeding and cross-seeding with microcrystals obtained from native plant protein. Crystals grew to dimensions of up to 500 × 250 × 375 μm at 277 K in the hanging-drops by vapour-diffusion. Further, the conditions are described that yielded the wild-type crystals with dimensions of 80 × 40 × 60 μm by self-nucleation vapour-diffusion in sitting-drops at 281 K. The wild-type and recombinant crystals prepared by seeding techniques achived full size within 5–14 days, while the wild-type crystals grown by self-nucleation appeared after 30 days and reached their maximum size after another two months. Both the wild-type and recombinant variant crystals, the latter altered in the key catalytic and substrate-binding residues Glu220, Trp434 and Arg158/Glu161 belonged to the P4(3)2(1)2 tetragonal space group, i.e., the space group of the native microcrystals was retained in the newly grown recombinant crystals. The crystals diffracted beyond 1.57–1.95 Å and the cell dimensions were between a = b = 99.2–100.8 Å and c = 183.2–183.6 Å. With one molecule in the asymmetric unit, the calculated Matthews coefficients were between 3.4–3.5 Å(3)·Da(−1) and the solvent contents varied between 63.4% and 64.5%. The macroseeding and cross-seeding techniques are advantageous, where a limited amount of variant proteins precludes screening of crystallisation conditions, or where variant proteins could not be crystallized. |
---|