Cargando…
Predicting β-turns and their types using predicted backbone dihedral angles and secondary structures
BACKGROUND: β-turns are secondary structure elements usually classified as coil. Their prediction is important, because of their role in protein folding and their frequent occurrence in protein chains. RESULTS: We have developed a novel method that predicts β-turns and their types using information...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2920885/ https://www.ncbi.nlm.nih.gov/pubmed/20673368 http://dx.doi.org/10.1186/1471-2105-11-407 |
Sumario: | BACKGROUND: β-turns are secondary structure elements usually classified as coil. Their prediction is important, because of their role in protein folding and their frequent occurrence in protein chains. RESULTS: We have developed a novel method that predicts β-turns and their types using information from multiple sequence alignments, predicted secondary structures and, for the first time, predicted dihedral angles. Our method uses support vector machines, a supervised classification technique, and is trained and tested on three established datasets of 426, 547 and 823 protein chains. We achieve a Matthews correlation coefficient of up to 0.49, when predicting the location of β-turns, the highest reported value to date. Moreover, the additional dihedral information improves the prediction of β-turn types I, II, IV, VIII and "non-specific", achieving correlation coefficients up to 0.39, 0.33, 0.27, 0.14 and 0.38, respectively. Our results are more accurate than other methods. CONCLUSIONS: We have created an accurate predictor of β-turns and their types. Our method, called DEBT, is available online at http://comp.chem.nottingham.ac.uk/debt/. |
---|