Cargando…

Regulation of Exocytosis and Fusion Pores by Synaptotagmin-Effector Interactions

Synaptotagmin (syt) serves as a Ca(2+) sensor in the release of neurotransmitters and hormones. This function depends on the ability of syt to interact with other molecules. Syt binds to phosphatidylserine (PS)-containing lipid bilayers as well as to soluble N-ethylmaleimide sensitive factor recepto...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Zhen, Hui, Enfu, Chapman, Edwin R., Jackson, Meyer B.
Formato: Texto
Lenguaje:English
Publicado: The American Society for Cell Biology 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2921110/
https://www.ncbi.nlm.nih.gov/pubmed/20573977
http://dx.doi.org/10.1091/mbc.E10-04-0285
_version_ 1782185349594742784
author Zhang, Zhen
Hui, Enfu
Chapman, Edwin R.
Jackson, Meyer B.
author_facet Zhang, Zhen
Hui, Enfu
Chapman, Edwin R.
Jackson, Meyer B.
author_sort Zhang, Zhen
collection PubMed
description Synaptotagmin (syt) serves as a Ca(2+) sensor in the release of neurotransmitters and hormones. This function depends on the ability of syt to interact with other molecules. Syt binds to phosphatidylserine (PS)-containing lipid bilayers as well as to soluble N-ethylmaleimide sensitive factor receptors (SNAREs) and promotes SNARE assembly. All these interactions are regulated by Ca(2+), but their specific roles in distinct kinetic steps of exocytosis are not well understood. To explore these questions we used amperometry recording from PC12 cells to investigate the kinetics of exocytosis. Syt isoforms and syt I mutants were overexpressed to perturb syt-PS and syt-SNARE interactions to varying degrees and evaluate the effects on fusion event frequency and the rates of fusion pore transitions. Syt I produced more rapid dilation of fusion pores than syt VII or syt IX, consistent with its role in synchronous synaptic release. Stronger syt-PS interactions were accompanied by a higher frequency of fusion events and more stable fusion pores. By contrast, syt-SNARE interactions and syt-induced SNARE assembly were uncorrelated with rates of exocytosis. This associates the syt-PS interaction with two distinct kinetic steps in Ca(2+) triggered exocytosis and supports a role for the syt-PS interaction in stabilizing open fusion pores.
format Text
id pubmed-2921110
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher The American Society for Cell Biology
record_format MEDLINE/PubMed
spelling pubmed-29211102010-10-30 Regulation of Exocytosis and Fusion Pores by Synaptotagmin-Effector Interactions Zhang, Zhen Hui, Enfu Chapman, Edwin R. Jackson, Meyer B. Mol Biol Cell Articles Synaptotagmin (syt) serves as a Ca(2+) sensor in the release of neurotransmitters and hormones. This function depends on the ability of syt to interact with other molecules. Syt binds to phosphatidylserine (PS)-containing lipid bilayers as well as to soluble N-ethylmaleimide sensitive factor receptors (SNAREs) and promotes SNARE assembly. All these interactions are regulated by Ca(2+), but their specific roles in distinct kinetic steps of exocytosis are not well understood. To explore these questions we used amperometry recording from PC12 cells to investigate the kinetics of exocytosis. Syt isoforms and syt I mutants were overexpressed to perturb syt-PS and syt-SNARE interactions to varying degrees and evaluate the effects on fusion event frequency and the rates of fusion pore transitions. Syt I produced more rapid dilation of fusion pores than syt VII or syt IX, consistent with its role in synchronous synaptic release. Stronger syt-PS interactions were accompanied by a higher frequency of fusion events and more stable fusion pores. By contrast, syt-SNARE interactions and syt-induced SNARE assembly were uncorrelated with rates of exocytosis. This associates the syt-PS interaction with two distinct kinetic steps in Ca(2+) triggered exocytosis and supports a role for the syt-PS interaction in stabilizing open fusion pores. The American Society for Cell Biology 2010-08-15 /pmc/articles/PMC2921110/ /pubmed/20573977 http://dx.doi.org/10.1091/mbc.E10-04-0285 Text en © 2010 by The American Society for Cell Biology
spellingShingle Articles
Zhang, Zhen
Hui, Enfu
Chapman, Edwin R.
Jackson, Meyer B.
Regulation of Exocytosis and Fusion Pores by Synaptotagmin-Effector Interactions
title Regulation of Exocytosis and Fusion Pores by Synaptotagmin-Effector Interactions
title_full Regulation of Exocytosis and Fusion Pores by Synaptotagmin-Effector Interactions
title_fullStr Regulation of Exocytosis and Fusion Pores by Synaptotagmin-Effector Interactions
title_full_unstemmed Regulation of Exocytosis and Fusion Pores by Synaptotagmin-Effector Interactions
title_short Regulation of Exocytosis and Fusion Pores by Synaptotagmin-Effector Interactions
title_sort regulation of exocytosis and fusion pores by synaptotagmin-effector interactions
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2921110/
https://www.ncbi.nlm.nih.gov/pubmed/20573977
http://dx.doi.org/10.1091/mbc.E10-04-0285
work_keys_str_mv AT zhangzhen regulationofexocytosisandfusionporesbysynaptotagmineffectorinteractions
AT huienfu regulationofexocytosisandfusionporesbysynaptotagmineffectorinteractions
AT chapmanedwinr regulationofexocytosisandfusionporesbysynaptotagmineffectorinteractions
AT jacksonmeyerb regulationofexocytosisandfusionporesbysynaptotagmineffectorinteractions