Cargando…

S-glutathionylation activates STIM1 and alters mitochondrial homeostasis

Oxidant stress influences many cellular processes, including cell growth, differentiation, and cell death. A well-recognized link between these processes and oxidant stress is via alterations in Ca(2+) signaling. However, precisely how oxidants influence Ca(2+) signaling remains unclear. Oxidant str...

Descripción completa

Detalles Bibliográficos
Autores principales: Hawkins, Brian J., Irrinki, Krishna M., Mallilankaraman, Karthik, Lien, Yu-Chin, Wang, Youjun, Bhanumathy, Cunnigaiper D., Subbiah, Ramasamy, Ritchie, Michael F., Soboloff, Jonathan, Baba, Yoshihiro, Kurosaki, Tomohiro, Joseph, Suresh K., Gill, Donald L., Madesh, Muniswamy
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2922639/
https://www.ncbi.nlm.nih.gov/pubmed/20679432
http://dx.doi.org/10.1083/jcb.201004152
_version_ 1782185444791812096
author Hawkins, Brian J.
Irrinki, Krishna M.
Mallilankaraman, Karthik
Lien, Yu-Chin
Wang, Youjun
Bhanumathy, Cunnigaiper D.
Subbiah, Ramasamy
Ritchie, Michael F.
Soboloff, Jonathan
Baba, Yoshihiro
Kurosaki, Tomohiro
Joseph, Suresh K.
Gill, Donald L.
Madesh, Muniswamy
author_facet Hawkins, Brian J.
Irrinki, Krishna M.
Mallilankaraman, Karthik
Lien, Yu-Chin
Wang, Youjun
Bhanumathy, Cunnigaiper D.
Subbiah, Ramasamy
Ritchie, Michael F.
Soboloff, Jonathan
Baba, Yoshihiro
Kurosaki, Tomohiro
Joseph, Suresh K.
Gill, Donald L.
Madesh, Muniswamy
author_sort Hawkins, Brian J.
collection PubMed
description Oxidant stress influences many cellular processes, including cell growth, differentiation, and cell death. A well-recognized link between these processes and oxidant stress is via alterations in Ca(2+) signaling. However, precisely how oxidants influence Ca(2+) signaling remains unclear. Oxidant stress led to a phenotypic shift in Ca(2+) mobilization from an oscillatory to a sustained elevated pattern via calcium release–activated calcium (CRAC)–mediated capacitive Ca(2+) entry, and stromal interaction molecule 1 (STIM1)– and Orai1-deficient cells are resistant to oxidant stress. Functionally, oxidant-induced Ca(2+) entry alters mitochondrial Ca(2+) handling and bioenergetics and triggers cell death. STIM1 is S-glutathionylated at cysteine 56 in response to oxidant stress and evokes constitutive Ca(2+) entry independent of intracellular Ca(2+) stores. These experiments reveal that cysteine 56 is a sensor for oxidant-dependent activation of STIM1 and demonstrate a molecular link between oxidant stress and Ca(2+) signaling via the CRAC channel.
format Text
id pubmed-2922639
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-29226392011-02-09 S-glutathionylation activates STIM1 and alters mitochondrial homeostasis Hawkins, Brian J. Irrinki, Krishna M. Mallilankaraman, Karthik Lien, Yu-Chin Wang, Youjun Bhanumathy, Cunnigaiper D. Subbiah, Ramasamy Ritchie, Michael F. Soboloff, Jonathan Baba, Yoshihiro Kurosaki, Tomohiro Joseph, Suresh K. Gill, Donald L. Madesh, Muniswamy J Cell Biol Research Articles Oxidant stress influences many cellular processes, including cell growth, differentiation, and cell death. A well-recognized link between these processes and oxidant stress is via alterations in Ca(2+) signaling. However, precisely how oxidants influence Ca(2+) signaling remains unclear. Oxidant stress led to a phenotypic shift in Ca(2+) mobilization from an oscillatory to a sustained elevated pattern via calcium release–activated calcium (CRAC)–mediated capacitive Ca(2+) entry, and stromal interaction molecule 1 (STIM1)– and Orai1-deficient cells are resistant to oxidant stress. Functionally, oxidant-induced Ca(2+) entry alters mitochondrial Ca(2+) handling and bioenergetics and triggers cell death. STIM1 is S-glutathionylated at cysteine 56 in response to oxidant stress and evokes constitutive Ca(2+) entry independent of intracellular Ca(2+) stores. These experiments reveal that cysteine 56 is a sensor for oxidant-dependent activation of STIM1 and demonstrate a molecular link between oxidant stress and Ca(2+) signaling via the CRAC channel. The Rockefeller University Press 2010-08-09 /pmc/articles/PMC2922639/ /pubmed/20679432 http://dx.doi.org/10.1083/jcb.201004152 Text en © 2010 Hawkins et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).
spellingShingle Research Articles
Hawkins, Brian J.
Irrinki, Krishna M.
Mallilankaraman, Karthik
Lien, Yu-Chin
Wang, Youjun
Bhanumathy, Cunnigaiper D.
Subbiah, Ramasamy
Ritchie, Michael F.
Soboloff, Jonathan
Baba, Yoshihiro
Kurosaki, Tomohiro
Joseph, Suresh K.
Gill, Donald L.
Madesh, Muniswamy
S-glutathionylation activates STIM1 and alters mitochondrial homeostasis
title S-glutathionylation activates STIM1 and alters mitochondrial homeostasis
title_full S-glutathionylation activates STIM1 and alters mitochondrial homeostasis
title_fullStr S-glutathionylation activates STIM1 and alters mitochondrial homeostasis
title_full_unstemmed S-glutathionylation activates STIM1 and alters mitochondrial homeostasis
title_short S-glutathionylation activates STIM1 and alters mitochondrial homeostasis
title_sort s-glutathionylation activates stim1 and alters mitochondrial homeostasis
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2922639/
https://www.ncbi.nlm.nih.gov/pubmed/20679432
http://dx.doi.org/10.1083/jcb.201004152
work_keys_str_mv AT hawkinsbrianj sglutathionylationactivatesstim1andaltersmitochondrialhomeostasis
AT irrinkikrishnam sglutathionylationactivatesstim1andaltersmitochondrialhomeostasis
AT mallilankaramankarthik sglutathionylationactivatesstim1andaltersmitochondrialhomeostasis
AT lienyuchin sglutathionylationactivatesstim1andaltersmitochondrialhomeostasis
AT wangyoujun sglutathionylationactivatesstim1andaltersmitochondrialhomeostasis
AT bhanumathycunnigaiperd sglutathionylationactivatesstim1andaltersmitochondrialhomeostasis
AT subbiahramasamy sglutathionylationactivatesstim1andaltersmitochondrialhomeostasis
AT ritchiemichaelf sglutathionylationactivatesstim1andaltersmitochondrialhomeostasis
AT soboloffjonathan sglutathionylationactivatesstim1andaltersmitochondrialhomeostasis
AT babayoshihiro sglutathionylationactivatesstim1andaltersmitochondrialhomeostasis
AT kurosakitomohiro sglutathionylationactivatesstim1andaltersmitochondrialhomeostasis
AT josephsureshk sglutathionylationactivatesstim1andaltersmitochondrialhomeostasis
AT gilldonaldl sglutathionylationactivatesstim1andaltersmitochondrialhomeostasis
AT madeshmuniswamy sglutathionylationactivatesstim1andaltersmitochondrialhomeostasis