Cargando…
S-glutathionylation activates STIM1 and alters mitochondrial homeostasis
Oxidant stress influences many cellular processes, including cell growth, differentiation, and cell death. A well-recognized link between these processes and oxidant stress is via alterations in Ca(2+) signaling. However, precisely how oxidants influence Ca(2+) signaling remains unclear. Oxidant str...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2922639/ https://www.ncbi.nlm.nih.gov/pubmed/20679432 http://dx.doi.org/10.1083/jcb.201004152 |
_version_ | 1782185444791812096 |
---|---|
author | Hawkins, Brian J. Irrinki, Krishna M. Mallilankaraman, Karthik Lien, Yu-Chin Wang, Youjun Bhanumathy, Cunnigaiper D. Subbiah, Ramasamy Ritchie, Michael F. Soboloff, Jonathan Baba, Yoshihiro Kurosaki, Tomohiro Joseph, Suresh K. Gill, Donald L. Madesh, Muniswamy |
author_facet | Hawkins, Brian J. Irrinki, Krishna M. Mallilankaraman, Karthik Lien, Yu-Chin Wang, Youjun Bhanumathy, Cunnigaiper D. Subbiah, Ramasamy Ritchie, Michael F. Soboloff, Jonathan Baba, Yoshihiro Kurosaki, Tomohiro Joseph, Suresh K. Gill, Donald L. Madesh, Muniswamy |
author_sort | Hawkins, Brian J. |
collection | PubMed |
description | Oxidant stress influences many cellular processes, including cell growth, differentiation, and cell death. A well-recognized link between these processes and oxidant stress is via alterations in Ca(2+) signaling. However, precisely how oxidants influence Ca(2+) signaling remains unclear. Oxidant stress led to a phenotypic shift in Ca(2+) mobilization from an oscillatory to a sustained elevated pattern via calcium release–activated calcium (CRAC)–mediated capacitive Ca(2+) entry, and stromal interaction molecule 1 (STIM1)– and Orai1-deficient cells are resistant to oxidant stress. Functionally, oxidant-induced Ca(2+) entry alters mitochondrial Ca(2+) handling and bioenergetics and triggers cell death. STIM1 is S-glutathionylated at cysteine 56 in response to oxidant stress and evokes constitutive Ca(2+) entry independent of intracellular Ca(2+) stores. These experiments reveal that cysteine 56 is a sensor for oxidant-dependent activation of STIM1 and demonstrate a molecular link between oxidant stress and Ca(2+) signaling via the CRAC channel. |
format | Text |
id | pubmed-2922639 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-29226392011-02-09 S-glutathionylation activates STIM1 and alters mitochondrial homeostasis Hawkins, Brian J. Irrinki, Krishna M. Mallilankaraman, Karthik Lien, Yu-Chin Wang, Youjun Bhanumathy, Cunnigaiper D. Subbiah, Ramasamy Ritchie, Michael F. Soboloff, Jonathan Baba, Yoshihiro Kurosaki, Tomohiro Joseph, Suresh K. Gill, Donald L. Madesh, Muniswamy J Cell Biol Research Articles Oxidant stress influences many cellular processes, including cell growth, differentiation, and cell death. A well-recognized link between these processes and oxidant stress is via alterations in Ca(2+) signaling. However, precisely how oxidants influence Ca(2+) signaling remains unclear. Oxidant stress led to a phenotypic shift in Ca(2+) mobilization from an oscillatory to a sustained elevated pattern via calcium release–activated calcium (CRAC)–mediated capacitive Ca(2+) entry, and stromal interaction molecule 1 (STIM1)– and Orai1-deficient cells are resistant to oxidant stress. Functionally, oxidant-induced Ca(2+) entry alters mitochondrial Ca(2+) handling and bioenergetics and triggers cell death. STIM1 is S-glutathionylated at cysteine 56 in response to oxidant stress and evokes constitutive Ca(2+) entry independent of intracellular Ca(2+) stores. These experiments reveal that cysteine 56 is a sensor for oxidant-dependent activation of STIM1 and demonstrate a molecular link between oxidant stress and Ca(2+) signaling via the CRAC channel. The Rockefeller University Press 2010-08-09 /pmc/articles/PMC2922639/ /pubmed/20679432 http://dx.doi.org/10.1083/jcb.201004152 Text en © 2010 Hawkins et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/). |
spellingShingle | Research Articles Hawkins, Brian J. Irrinki, Krishna M. Mallilankaraman, Karthik Lien, Yu-Chin Wang, Youjun Bhanumathy, Cunnigaiper D. Subbiah, Ramasamy Ritchie, Michael F. Soboloff, Jonathan Baba, Yoshihiro Kurosaki, Tomohiro Joseph, Suresh K. Gill, Donald L. Madesh, Muniswamy S-glutathionylation activates STIM1 and alters mitochondrial homeostasis |
title | S-glutathionylation activates STIM1 and alters mitochondrial homeostasis |
title_full | S-glutathionylation activates STIM1 and alters mitochondrial homeostasis |
title_fullStr | S-glutathionylation activates STIM1 and alters mitochondrial homeostasis |
title_full_unstemmed | S-glutathionylation activates STIM1 and alters mitochondrial homeostasis |
title_short | S-glutathionylation activates STIM1 and alters mitochondrial homeostasis |
title_sort | s-glutathionylation activates stim1 and alters mitochondrial homeostasis |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2922639/ https://www.ncbi.nlm.nih.gov/pubmed/20679432 http://dx.doi.org/10.1083/jcb.201004152 |
work_keys_str_mv | AT hawkinsbrianj sglutathionylationactivatesstim1andaltersmitochondrialhomeostasis AT irrinkikrishnam sglutathionylationactivatesstim1andaltersmitochondrialhomeostasis AT mallilankaramankarthik sglutathionylationactivatesstim1andaltersmitochondrialhomeostasis AT lienyuchin sglutathionylationactivatesstim1andaltersmitochondrialhomeostasis AT wangyoujun sglutathionylationactivatesstim1andaltersmitochondrialhomeostasis AT bhanumathycunnigaiperd sglutathionylationactivatesstim1andaltersmitochondrialhomeostasis AT subbiahramasamy sglutathionylationactivatesstim1andaltersmitochondrialhomeostasis AT ritchiemichaelf sglutathionylationactivatesstim1andaltersmitochondrialhomeostasis AT soboloffjonathan sglutathionylationactivatesstim1andaltersmitochondrialhomeostasis AT babayoshihiro sglutathionylationactivatesstim1andaltersmitochondrialhomeostasis AT kurosakitomohiro sglutathionylationactivatesstim1andaltersmitochondrialhomeostasis AT josephsureshk sglutathionylationactivatesstim1andaltersmitochondrialhomeostasis AT gilldonaldl sglutathionylationactivatesstim1andaltersmitochondrialhomeostasis AT madeshmuniswamy sglutathionylationactivatesstim1andaltersmitochondrialhomeostasis |