Cargando…
A Novel Model-Free Data Analysis Technique Based on Clustering in a Mutual Information Space: Application to Resting-State fMRI
Non-parametric data-driven analysis techniques can be used to study datasets with few assumptions about the data and underlying experiment. Variations of independent component analysis (ICA) have been the methods mostly used on fMRI data, e.g., in finding resting-state networks thought to reflect th...
Autores principales: | Benjaminsson, Simon, Fransson, Peter, Lansner, Anders |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Frontiers Research Foundation
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2922939/ https://www.ncbi.nlm.nih.gov/pubmed/20721313 http://dx.doi.org/10.3389/fnsys.2010.00034 |
Ejemplares similares
-
An implementation of integrated information theory in resting-state fMRI
por: Nemirovsky, Idan E., et al.
Publicado: (2023) -
Normalized Cut Group Clustering of Resting-State fMRI Data
por: van den Heuvel, Martijn, et al.
Publicado: (2008) -
A large-scale model of the three first stages of the mammalian olfactory system implemented with spiking neurons
por: Kaplan, Bernhard, et al.
Publicado: (2011) -
Odor segmentation and identification in an abstract large-scale model of the mammalian olfactory system
por: Benjaminsson, Simon, et al.
Publicado: (2011) -
Network Connectivity in Epilepsy: Resting State fMRI and EEG–fMRI Contributions
por: Centeno, Maria, et al.
Publicado: (2014)