Cargando…
Data reduction for spectral clustering to analyze high throughput flow cytometry data
BACKGROUND: Recent biological discoveries have shown that clustering large datasets is essential for better understanding biology in many areas. Spectral clustering in particular has proven to be a powerful tool amenable for many applications. However, it cannot be directly applied to large datasets...
Autores principales: | Zare, Habil, Shooshtari, Parisa, Gupta, Arvind, Brinkman, Ryan R |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2923634/ https://www.ncbi.nlm.nih.gov/pubmed/20667133 http://dx.doi.org/10.1186/1471-2105-11-403 |
Ejemplares similares
-
Flow cytometry data standards
por: Spidlen, Josef, et al.
Publicado: (2011) -
Optimizing transformations for automated, high throughput analysis of flow cytometry data
por: Finak, Greg, et al.
Publicado: (2010) -
Analysis of High-Throughput Flow Cytometry Data Using plateCore
por: Strain, Errol, et al.
Publicado: (2009) -
Recent Bioinformatics Advances in the Analysis of High Throughput Flow Cytometry Data
por: Gottardo, Raphael, et al.
Publicado: (2009) -
Exhaustive expansion: A novel technique for analyzing complex data generated by higher-order polychromatic flow cytometry experiments
por: Siebert, Janet C, et al.
Publicado: (2010)