Cargando…

Multinomial inference on distributed responses in SPM

In this work, we propose statistical methods to perform inference on the spatial distribution of topological features (e.g. maxima or clusters) in statistical parametric maps (SPMs). This contrasts with local inference on the features per se (e.g., height or extent), which is well-studied (e.g. Fris...

Descripción completa

Detalles Bibliográficos
Autores principales: Chumbley, J.R., Flandin, G., Seghier, M.L., Friston, K.J.
Formato: Texto
Lenguaje:English
Publicado: Academic Press 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2923777/
https://www.ncbi.nlm.nih.gov/pubmed/20570739
http://dx.doi.org/10.1016/j.neuroimage.2010.05.076
_version_ 1782185540835082240
author Chumbley, J.R.
Flandin, G.
Seghier, M.L.
Friston, K.J.
author_facet Chumbley, J.R.
Flandin, G.
Seghier, M.L.
Friston, K.J.
author_sort Chumbley, J.R.
collection PubMed
description In this work, we propose statistical methods to perform inference on the spatial distribution of topological features (e.g. maxima or clusters) in statistical parametric maps (SPMs). This contrasts with local inference on the features per se (e.g., height or extent), which is well-studied (e.g. Friston et al., 1991, 1994; Worsley et al., 1992, 2003, 2004). We present a Bayesian approach to detecting experimentally-induced patterns of distributed responses in SPMs with anisotropic, non-stationary noise and arbitrary geometry. We extend the framework to accommodate fixed- and random-effects analyses at the within and between-subject levels respectively. We illustrate the method by characterising the anatomy of language at different scales of functional segregation.
format Text
id pubmed-2923777
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher Academic Press
record_format MEDLINE/PubMed
spelling pubmed-29237772010-09-08 Multinomial inference on distributed responses in SPM Chumbley, J.R. Flandin, G. Seghier, M.L. Friston, K.J. Neuroimage Technical Note In this work, we propose statistical methods to perform inference on the spatial distribution of topological features (e.g. maxima or clusters) in statistical parametric maps (SPMs). This contrasts with local inference on the features per se (e.g., height or extent), which is well-studied (e.g. Friston et al., 1991, 1994; Worsley et al., 1992, 2003, 2004). We present a Bayesian approach to detecting experimentally-induced patterns of distributed responses in SPMs with anisotropic, non-stationary noise and arbitrary geometry. We extend the framework to accommodate fixed- and random-effects analyses at the within and between-subject levels respectively. We illustrate the method by characterising the anatomy of language at different scales of functional segregation. Academic Press 2010-10-15 /pmc/articles/PMC2923777/ /pubmed/20570739 http://dx.doi.org/10.1016/j.neuroimage.2010.05.076 Text en © 2010 Elsevier Inc. https://creativecommons.org/licenses/by/3.0/ Open Access under CC BY 3.0 (https://creativecommons.org/licenses/by/3.0/) license
spellingShingle Technical Note
Chumbley, J.R.
Flandin, G.
Seghier, M.L.
Friston, K.J.
Multinomial inference on distributed responses in SPM
title Multinomial inference on distributed responses in SPM
title_full Multinomial inference on distributed responses in SPM
title_fullStr Multinomial inference on distributed responses in SPM
title_full_unstemmed Multinomial inference on distributed responses in SPM
title_short Multinomial inference on distributed responses in SPM
title_sort multinomial inference on distributed responses in spm
topic Technical Note
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2923777/
https://www.ncbi.nlm.nih.gov/pubmed/20570739
http://dx.doi.org/10.1016/j.neuroimage.2010.05.076
work_keys_str_mv AT chumbleyjr multinomialinferenceondistributedresponsesinspm
AT flanding multinomialinferenceondistributedresponsesinspm
AT seghierml multinomialinferenceondistributedresponsesinspm
AT fristonkj multinomialinferenceondistributedresponsesinspm