Cargando…
Adaptive Contact Networks Change Effective Disease Infectiousness and Dynamics
Human societies are organized in complex webs that are constantly reshaped by a social dynamic which is influenced by the information individuals have about others. Similarly, epidemic spreading may be affected by local information that makes individuals aware of the health status of their social co...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2924249/ https://www.ncbi.nlm.nih.gov/pubmed/20808884 http://dx.doi.org/10.1371/journal.pcbi.1000895 |
_version_ | 1782185556333035520 |
---|---|
author | Van Segbroeck, Sven Santos, Francisco C. Pacheco, Jorge M. |
author_facet | Van Segbroeck, Sven Santos, Francisco C. Pacheco, Jorge M. |
author_sort | Van Segbroeck, Sven |
collection | PubMed |
description | Human societies are organized in complex webs that are constantly reshaped by a social dynamic which is influenced by the information individuals have about others. Similarly, epidemic spreading may be affected by local information that makes individuals aware of the health status of their social contacts, allowing them to avoid contact with those infected and to remain in touch with the healthy. Here we study disease dynamics in finite populations in which infection occurs along the links of a dynamical contact network whose reshaping may be biased based on each individual's health status. We adopt some of the most widely used epidemiological models, investigating the impact of the reshaping of the contact network on the disease dynamics. We derive analytical results in the limit where network reshaping occurs much faster than disease spreading and demonstrate numerically that this limit extends to a much wider range of time scales than one might anticipate. Specifically, we show that from a population-level description, disease propagation in a quickly adapting network can be formulated equivalently as disease spreading on a well-mixed population but with a rescaled infectiousness. We find that for all models studied here – SI, SIS and SIR – the effective infectiousness of a disease depends on the population size, the number of infected in the population, and the capacity of healthy individuals to sever contacts with the infected. Importantly, we indicate how the use of available information hinders disease progression, either by reducing the average time required to eradicate a disease (in case recovery is possible), or by increasing the average time needed for a disease to spread to the entire population (in case recovery or immunity is impossible). |
format | Text |
id | pubmed-2924249 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-29242492010-08-31 Adaptive Contact Networks Change Effective Disease Infectiousness and Dynamics Van Segbroeck, Sven Santos, Francisco C. Pacheco, Jorge M. PLoS Comput Biol Research Article Human societies are organized in complex webs that are constantly reshaped by a social dynamic which is influenced by the information individuals have about others. Similarly, epidemic spreading may be affected by local information that makes individuals aware of the health status of their social contacts, allowing them to avoid contact with those infected and to remain in touch with the healthy. Here we study disease dynamics in finite populations in which infection occurs along the links of a dynamical contact network whose reshaping may be biased based on each individual's health status. We adopt some of the most widely used epidemiological models, investigating the impact of the reshaping of the contact network on the disease dynamics. We derive analytical results in the limit where network reshaping occurs much faster than disease spreading and demonstrate numerically that this limit extends to a much wider range of time scales than one might anticipate. Specifically, we show that from a population-level description, disease propagation in a quickly adapting network can be formulated equivalently as disease spreading on a well-mixed population but with a rescaled infectiousness. We find that for all models studied here – SI, SIS and SIR – the effective infectiousness of a disease depends on the population size, the number of infected in the population, and the capacity of healthy individuals to sever contacts with the infected. Importantly, we indicate how the use of available information hinders disease progression, either by reducing the average time required to eradicate a disease (in case recovery is possible), or by increasing the average time needed for a disease to spread to the entire population (in case recovery or immunity is impossible). Public Library of Science 2010-08-19 /pmc/articles/PMC2924249/ /pubmed/20808884 http://dx.doi.org/10.1371/journal.pcbi.1000895 Text en Van Segbroeck et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Van Segbroeck, Sven Santos, Francisco C. Pacheco, Jorge M. Adaptive Contact Networks Change Effective Disease Infectiousness and Dynamics |
title | Adaptive Contact Networks Change Effective Disease Infectiousness and Dynamics |
title_full | Adaptive Contact Networks Change Effective Disease Infectiousness and Dynamics |
title_fullStr | Adaptive Contact Networks Change Effective Disease Infectiousness and Dynamics |
title_full_unstemmed | Adaptive Contact Networks Change Effective Disease Infectiousness and Dynamics |
title_short | Adaptive Contact Networks Change Effective Disease Infectiousness and Dynamics |
title_sort | adaptive contact networks change effective disease infectiousness and dynamics |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2924249/ https://www.ncbi.nlm.nih.gov/pubmed/20808884 http://dx.doi.org/10.1371/journal.pcbi.1000895 |
work_keys_str_mv | AT vansegbroecksven adaptivecontactnetworkschangeeffectivediseaseinfectiousnessanddynamics AT santosfranciscoc adaptivecontactnetworkschangeeffectivediseaseinfectiousnessanddynamics AT pachecojorgem adaptivecontactnetworkschangeeffectivediseaseinfectiousnessanddynamics |