Cargando…

Fine mapping of the hereditary haemorrhagic telangiectasia (HHT)3 locus on chromosome 5 excludes VE-Cadherin-2, Sprouty4 and other interval genes

BACKGROUND: There is significant interest in new loci for the inherited condition hereditary haemorrhagic telangiectasia (HHT) because the known disease genes encode proteins involved in vascular transforming growth factor (TGF)-β signalling pathways, and the disease phenotype appears to be unmasked...

Descripción completa

Detalles Bibliográficos
Autores principales: Govani, Fatima S, Shovlin, Claire L
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2924844/
https://www.ncbi.nlm.nih.gov/pubmed/20701797
http://dx.doi.org/10.1186/2040-2384-2-15
_version_ 1782185627594260480
author Govani, Fatima S
Shovlin, Claire L
author_facet Govani, Fatima S
Shovlin, Claire L
author_sort Govani, Fatima S
collection PubMed
description BACKGROUND: There is significant interest in new loci for the inherited condition hereditary haemorrhagic telangiectasia (HHT) because the known disease genes encode proteins involved in vascular transforming growth factor (TGF)-β signalling pathways, and the disease phenotype appears to be unmasked or provoked by angiogenesis in man and animal models. In a previous study, we mapped a new locus for HHT (HHT3) to a 5.7 Mb region of chromosome 5. Some of the polymorphic markers used had been uninformative in key recombinant individuals, leaving two potentially excludable regions, one of which contained loci for attractive candidate genes encoding VE Cadherin-2, Sprouty4 and FGF1, proteins involved in angiogenesis. METHODS: Extended analyses in the interval-defining pedigree were performed using informative genomic sequence variants identified during candidate gene sequencing. These variants were amplified by polymerase chain reaction; sequenced on an ABI 3730xl, and analysed using FinchTV V1.4.0 software. RESULTS: Informative genomic sequence variants were used to construct haplotypes permitting more precise citing of recombination breakpoints. These reduced the uninformative centromeric region from 141.2-144 Mb to between 141.9-142.6 Mb, and the uninformative telomeric region from 145.2-146.9 Mb to between 146.1-146.4 Mb. CONCLUSIONS: The HHT3 interval on chromosome 5 was reduced to 4.5 Mb excluding 30% of the coding genes in the original HHT3 interval. Strong candidates VE-cadherin-2 and Sprouty4 cannot be HHT3.
format Text
id pubmed-2924844
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-29248442010-08-21 Fine mapping of the hereditary haemorrhagic telangiectasia (HHT)3 locus on chromosome 5 excludes VE-Cadherin-2, Sprouty4 and other interval genes Govani, Fatima S Shovlin, Claire L J Angiogenes Res Research BACKGROUND: There is significant interest in new loci for the inherited condition hereditary haemorrhagic telangiectasia (HHT) because the known disease genes encode proteins involved in vascular transforming growth factor (TGF)-β signalling pathways, and the disease phenotype appears to be unmasked or provoked by angiogenesis in man and animal models. In a previous study, we mapped a new locus for HHT (HHT3) to a 5.7 Mb region of chromosome 5. Some of the polymorphic markers used had been uninformative in key recombinant individuals, leaving two potentially excludable regions, one of which contained loci for attractive candidate genes encoding VE Cadherin-2, Sprouty4 and FGF1, proteins involved in angiogenesis. METHODS: Extended analyses in the interval-defining pedigree were performed using informative genomic sequence variants identified during candidate gene sequencing. These variants were amplified by polymerase chain reaction; sequenced on an ABI 3730xl, and analysed using FinchTV V1.4.0 software. RESULTS: Informative genomic sequence variants were used to construct haplotypes permitting more precise citing of recombination breakpoints. These reduced the uninformative centromeric region from 141.2-144 Mb to between 141.9-142.6 Mb, and the uninformative telomeric region from 145.2-146.9 Mb to between 146.1-146.4 Mb. CONCLUSIONS: The HHT3 interval on chromosome 5 was reduced to 4.5 Mb excluding 30% of the coding genes in the original HHT3 interval. Strong candidates VE-cadherin-2 and Sprouty4 cannot be HHT3. BioMed Central 2010-08-11 /pmc/articles/PMC2924844/ /pubmed/20701797 http://dx.doi.org/10.1186/2040-2384-2-15 Text en Copyright ©2010 Govani and Shovlin; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Govani, Fatima S
Shovlin, Claire L
Fine mapping of the hereditary haemorrhagic telangiectasia (HHT)3 locus on chromosome 5 excludes VE-Cadherin-2, Sprouty4 and other interval genes
title Fine mapping of the hereditary haemorrhagic telangiectasia (HHT)3 locus on chromosome 5 excludes VE-Cadherin-2, Sprouty4 and other interval genes
title_full Fine mapping of the hereditary haemorrhagic telangiectasia (HHT)3 locus on chromosome 5 excludes VE-Cadherin-2, Sprouty4 and other interval genes
title_fullStr Fine mapping of the hereditary haemorrhagic telangiectasia (HHT)3 locus on chromosome 5 excludes VE-Cadherin-2, Sprouty4 and other interval genes
title_full_unstemmed Fine mapping of the hereditary haemorrhagic telangiectasia (HHT)3 locus on chromosome 5 excludes VE-Cadherin-2, Sprouty4 and other interval genes
title_short Fine mapping of the hereditary haemorrhagic telangiectasia (HHT)3 locus on chromosome 5 excludes VE-Cadherin-2, Sprouty4 and other interval genes
title_sort fine mapping of the hereditary haemorrhagic telangiectasia (hht)3 locus on chromosome 5 excludes ve-cadherin-2, sprouty4 and other interval genes
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2924844/
https://www.ncbi.nlm.nih.gov/pubmed/20701797
http://dx.doi.org/10.1186/2040-2384-2-15
work_keys_str_mv AT govanifatimas finemappingofthehereditaryhaemorrhagictelangiectasiahht3locusonchromosome5excludesvecadherin2sprouty4andotherintervalgenes
AT shovlinclairel finemappingofthehereditaryhaemorrhagictelangiectasiahht3locusonchromosome5excludesvecadherin2sprouty4andotherintervalgenes