Cargando…

An ADAM9 mutation in canine cone-rod dystrophy 3 establishes homology with human cone-rod dystrophy 9

PURPOSE: To identify the causative mutation in a canine cone-rod dystrophy (crd3) that segregates as an adult onset disorder in the Glen of Imaal Terrier breed of dog. METHODS: Glen of Imaal Terriers were ascertained for crd3 phenotype by clinical ophthalmoscopic examination, and in selected cases b...

Descripción completa

Detalles Bibliográficos
Autores principales: Goldstein, Orly, Mezey, Jason G., Boyko, Adam R., Gao, Chuan, Wang, Wei, Bustamante, Carlos D., Anguish, Lynne J., Jordan, Julie Ann, Pearce-Kelling, Susan E., Aguirre, Gustavo D., Acland, Gregory M.
Formato: Texto
Lenguaje:English
Publicado: Molecular Vision 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2925905/
https://www.ncbi.nlm.nih.gov/pubmed/20806078
Descripción
Sumario:PURPOSE: To identify the causative mutation in a canine cone-rod dystrophy (crd3) that segregates as an adult onset disorder in the Glen of Imaal Terrier breed of dog. METHODS: Glen of Imaal Terriers were ascertained for crd3 phenotype by clinical ophthalmoscopic examination, and in selected cases by electroretinography. Blood samples from affected cases and non-affected controls were collected and used, after DNA extraction, to undertake a genome-wide association study using Affymetrix Version 2 Canine single nucleotide polymorphism chips and 250K Sty Assay protocol. Positional candidate gene analysis was undertaken for genes identified within the peak-association signal region. Retinal morphology of selected crd3-affected dogs was evaluated by light and electron microscopy. RESULTS: A peak association signal exceeding genome-wide significance was identified on canine chromosome 16. Evaluation of genes in this region suggested A Disintegrin And Metalloprotease domain, family member 9 (ADAM9), identified concurrently elsewhere as the cause of human cone-rod dystrophy 9 (CORD9), as a strong positional candidate for canine crd3. Sequence analysis identified a large genomic deletion (over 20 kb) that removed exons 15 and 16 from the ADAM9 transcript, introduced a premature stop, and would remove critical domains from the encoded protein. Light and electron microscopy established that, as in ADAM9 knockout mice, the primary lesion in crd3 appears to be a failure of the apical microvilli of the retinal pigment epithelium to appropriately invest photoreceptor outer segments. By electroretinography, retinal function appears normal in very young crd3-affected dogs, but by 15 months of age, cone dysfunction is present. Subsequently, both rod and cone function degenerate. CONCLUSIONS: Identification of this ADAM9 deletion in crd3-affected dogs establishes this canine disease as orthologous to CORD9 in humans, and offers opportunities for further characterization of the disease process, and potential for genetic therapeutic intervention.