Cargando…

Identification of dominant FOXE3 and PAX6 mutations in patients with congenital cataract and aniridia

PURPOSE: Aniridia and congenital cataract represent rare but severe developmental ocular conditions. We examined 33 probands from France for mutations in several transcription factors associated with these phenotypes, the forkhead box E3 (FOXE3), paired box gene 6 (PAX6), paired-like homeodomain tra...

Descripción completa

Detalles Bibliográficos
Autores principales: Brémond-Gignac, Dominique, Bitoun, Pierre, Reis, Linda M., Copin, Henri, Murray, Jeffrey C., Semina, Elena V.
Formato: Texto
Lenguaje:English
Publicado: Molecular Vision 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2927439/
https://www.ncbi.nlm.nih.gov/pubmed/20806047
_version_ 1782185753137119232
author Brémond-Gignac, Dominique
Bitoun, Pierre
Reis, Linda M.
Copin, Henri
Murray, Jeffrey C.
Semina, Elena V.
author_facet Brémond-Gignac, Dominique
Bitoun, Pierre
Reis, Linda M.
Copin, Henri
Murray, Jeffrey C.
Semina, Elena V.
author_sort Brémond-Gignac, Dominique
collection PubMed
description PURPOSE: Aniridia and congenital cataract represent rare but severe developmental ocular conditions. We examined 33 probands from France for mutations in several transcription factors associated with these phenotypes, the forkhead box E3 (FOXE3), paired box gene 6 (PAX6), paired-like homeodomain transcription factor 2 (PITX2), and paired-like homeodomain transcription factor 3 (PITX3) genes. METHODS: Out of 33 probands, 27 were affected with congenital cataract while the remaining six were affected with aniridia (with or without cataract). The coding regions of FOXE3, PAX6, PITX2, and PITX3 were examined by direct DNA sequencing of gene-specific PCR products. RESULTS: A novel dominant mutation at the stop codon of FOXE3, c.959G>C (p.X320SerextX72), was identified in a patient with congenital cataract. Another novel FOXE3 sequence change, c.571–579dup (p.Tyr191_Pro193dup), was identified in a patient with aniridia, mild lens opacities, and some additional ocular defects; this patient was also found to carry a nonsense mutation in PAX6. PAX6 mutations were identified in two additional probands with aniridia and cataracts. None of the observed sequence alterations were found in normal controls. No mutations were identified in PITX2 or PITX3. CONCLUSIONS: The p.X320SerextX72 mutation is only the fourth FOXE3 allele associated with a dominant phenotype since the majority of FOXE3 mutations appear to be recessive with no phenotype observed in heterozygous carriers. The encoded protein is predicted to contain a complete normal sequence followed by seventy-two erroneous amino acids; the position and effect of this mutation are similar to two of the previously reported dominant changes, suggesting a common mechanism for dominant alleles. The p.Tyr191_Pro193dup is predicted to result in an in-frame duplication of three amino acids; however, the contribution of this mutation to the phenotype is unclear since the affected patient also carries a nonsense mutation in PAX6 which acts upstream of FOXE3 in the molecular pathway. The identified PAX6 mutations correspond to the two most commonly observed mutant alleles and demonstrate phenotypes that are consistent with the previously reported spectrum.
format Text
id pubmed-2927439
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher Molecular Vision
record_format MEDLINE/PubMed
spelling pubmed-29274392010-08-30 Identification of dominant FOXE3 and PAX6 mutations in patients with congenital cataract and aniridia Brémond-Gignac, Dominique Bitoun, Pierre Reis, Linda M. Copin, Henri Murray, Jeffrey C. Semina, Elena V. Mol Vis Research Article PURPOSE: Aniridia and congenital cataract represent rare but severe developmental ocular conditions. We examined 33 probands from France for mutations in several transcription factors associated with these phenotypes, the forkhead box E3 (FOXE3), paired box gene 6 (PAX6), paired-like homeodomain transcription factor 2 (PITX2), and paired-like homeodomain transcription factor 3 (PITX3) genes. METHODS: Out of 33 probands, 27 were affected with congenital cataract while the remaining six were affected with aniridia (with or without cataract). The coding regions of FOXE3, PAX6, PITX2, and PITX3 were examined by direct DNA sequencing of gene-specific PCR products. RESULTS: A novel dominant mutation at the stop codon of FOXE3, c.959G>C (p.X320SerextX72), was identified in a patient with congenital cataract. Another novel FOXE3 sequence change, c.571–579dup (p.Tyr191_Pro193dup), was identified in a patient with aniridia, mild lens opacities, and some additional ocular defects; this patient was also found to carry a nonsense mutation in PAX6. PAX6 mutations were identified in two additional probands with aniridia and cataracts. None of the observed sequence alterations were found in normal controls. No mutations were identified in PITX2 or PITX3. CONCLUSIONS: The p.X320SerextX72 mutation is only the fourth FOXE3 allele associated with a dominant phenotype since the majority of FOXE3 mutations appear to be recessive with no phenotype observed in heterozygous carriers. The encoded protein is predicted to contain a complete normal sequence followed by seventy-two erroneous amino acids; the position and effect of this mutation are similar to two of the previously reported dominant changes, suggesting a common mechanism for dominant alleles. The p.Tyr191_Pro193dup is predicted to result in an in-frame duplication of three amino acids; however, the contribution of this mutation to the phenotype is unclear since the affected patient also carries a nonsense mutation in PAX6 which acts upstream of FOXE3 in the molecular pathway. The identified PAX6 mutations correspond to the two most commonly observed mutant alleles and demonstrate phenotypes that are consistent with the previously reported spectrum. Molecular Vision 2010-08-22 /pmc/articles/PMC2927439/ /pubmed/20806047 Text en Copyright © 2010 Molecular Vision. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Brémond-Gignac, Dominique
Bitoun, Pierre
Reis, Linda M.
Copin, Henri
Murray, Jeffrey C.
Semina, Elena V.
Identification of dominant FOXE3 and PAX6 mutations in patients with congenital cataract and aniridia
title Identification of dominant FOXE3 and PAX6 mutations in patients with congenital cataract and aniridia
title_full Identification of dominant FOXE3 and PAX6 mutations in patients with congenital cataract and aniridia
title_fullStr Identification of dominant FOXE3 and PAX6 mutations in patients with congenital cataract and aniridia
title_full_unstemmed Identification of dominant FOXE3 and PAX6 mutations in patients with congenital cataract and aniridia
title_short Identification of dominant FOXE3 and PAX6 mutations in patients with congenital cataract and aniridia
title_sort identification of dominant foxe3 and pax6 mutations in patients with congenital cataract and aniridia
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2927439/
https://www.ncbi.nlm.nih.gov/pubmed/20806047
work_keys_str_mv AT bremondgignacdominique identificationofdominantfoxe3andpax6mutationsinpatientswithcongenitalcataractandaniridia
AT bitounpierre identificationofdominantfoxe3andpax6mutationsinpatientswithcongenitalcataractandaniridia
AT reislindam identificationofdominantfoxe3andpax6mutationsinpatientswithcongenitalcataractandaniridia
AT copinhenri identificationofdominantfoxe3andpax6mutationsinpatientswithcongenitalcataractandaniridia
AT murrayjeffreyc identificationofdominantfoxe3andpax6mutationsinpatientswithcongenitalcataractandaniridia
AT seminaelenav identificationofdominantfoxe3andpax6mutationsinpatientswithcongenitalcataractandaniridia