Cargando…
Structure of the Altitude Adapted Hemoglobin of Guinea Pig in the R2-State
BACKGROUND: Guinea pigs are considered to be genetically adapted to a high altitude environment based on the consistent finding of a high oxygen affinity of their blood. METHODOLOGY/PRINCIPAL FINDINGS: The crystal structure of guinea pig hemoglobin at 1.8 Å resolution suggests that the increased oxy...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2927554/ https://www.ncbi.nlm.nih.gov/pubmed/20811494 http://dx.doi.org/10.1371/journal.pone.0012389 |
Sumario: | BACKGROUND: Guinea pigs are considered to be genetically adapted to a high altitude environment based on the consistent finding of a high oxygen affinity of their blood. METHODOLOGY/PRINCIPAL FINDINGS: The crystal structure of guinea pig hemoglobin at 1.8 Å resolution suggests that the increased oxygen affinity of guinea pig hemoglobin can be explained by two factors, namely a decreased stability of the T-state and an increased stability of the R2-state. The destabilization of the T-state can be related to the substitution of a highly conserved proline (P44) to histidine (H44) in the α-subunit, which causes a steric hindrance with H97 of the β-subunit in the switch region. The stabilization of the R2-state is caused by two additional salt bridges at the β1/β2 interface. CONCLUSIONS/SIGNIFICANCE: Both factors together are supposed to serve to shift the equilibrium between the conformational states towards the high affinity relaxed states resulting in an increased oxygen affinity. |
---|