Cargando…
Frequency of β-thalassemia trait and other hemoglobinopathies in northern and western India
INTRODUCTION: India is an ethnically diverse country with an approximate population of 1.2 billion. The frequency of beta-thalassemia trait (βTT) has variously been reported from <1% to 17% and an average of 3.3%. Most of these studies have been carried out on small population groups and some hav...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2927789/ https://www.ncbi.nlm.nih.gov/pubmed/20838487 http://dx.doi.org/10.4103/0971-6866.64941 |
_version_ | 1782185784555601920 |
---|---|
author | Madan, Nishi Sharma, Satendra Sood, S. K. Colah, Roshan Bhatia, (Late) H. M. |
author_facet | Madan, Nishi Sharma, Satendra Sood, S. K. Colah, Roshan Bhatia, (Late) H. M. |
author_sort | Madan, Nishi |
collection | PubMed |
description | INTRODUCTION: India is an ethnically diverse country with an approximate population of 1.2 billion. The frequency of beta-thalassemia trait (βTT) has variously been reported from <1% to 17% and an average of 3.3%. Most of these studies have been carried out on small population groups and some have been based on hospital-based patients. There is also a variation in the prevalence of hemoglobinopathies in different regions and population groups in the country. A high frequency of Hb D has been reported from the North in the Punjabi population, Hb E in the eastern region of India and Hb S is mainly reported from populations of tribal origin from different parts of the country. OBJECTIVES: To study the gene frequency of βTT and other hemoglobinopathies in three regions East (Kolkata), West (Mumbai) and North (Delhi) in larghe population group (schoolchildren) for a more accurate assessment of gene frequency for planning of control programmes for haemoglobinopathies. MATERIALS AND METHODS: This study included 5408 children from 11 schools in Delhi, 5682 from 75 schools in Mumbai and 957 schoolchildren from Kolkata who were screened for βTT and haemoglobinopathies. These included 5684 children from 75 schools in Mumbai and 5408 children from 11 schools in Delhi. Children were 11-18 years of age of both sexes. The final report is, however, only on 11090 schoolchildren from Mumbai and Delhi as data from Kolkata was restricted both in numbers and objectives and could not be included for comparison. RESULTS: The overall gene frequency of βTT in Mumbai and Delhi was 4.05% being 2.68% and 5.47% in children of the two cities respectively. In Mumbai, the gene frequency was evenly distributed. Majority of the children with βTT from Mumbai were from Marathi (38.9%) and Gujarati (25%) speaking groups. Gene frequency was >5% in Bhatias, Khatris, Lohanas and Schedule Castes. In Delhi, a higher incidence was observed in schoolchildren of North and West Delhi (5.8-9.2%). The schoolchildren of North and West Delhi comprised predominantly of Punjabi origin compared to children in the South of the city (2.2%, 2.3%). When analyzed state-wise, the highest incidence was observed in children of Punjabi origin (7.6%) and was >4% from several other states. Majority of the traits from Mumbai were anemic (95.1% male and 85.6% in female). The prevalence of anemia was lower (62.7% male and 58.4% female) children with βTT from Delhi. This was a reflection of the higher prevalence of anemia in children without hemoglobinopathy in Mumbai than in Delhi. Nutritional deficiency was probably more severe and rampant in children Mumbai. Gene frequency of Hb D was greater in schoolchildren from Delhi (1.1%) than in Mumbai (0.7%). Hb S trait (0.2%) was observed exclusively in children from Mumbai. A low incidence of Hb E trait (0.04%) was seen in children in Mumbai. A higher incidence is reported from the East. The number of cases studied from the eastern region was small as the data from the East (Kolkata) could not be included in the analysis. CONCLUSION: This study comprises a larger number of children studied for the gene frequency of βTT and other hemoglobinopathies from India. Population groups with higher gene frequencies require screening programmes and facilities for antenatal diagnosis as well as increased awareness and educational programmes to control the birth of thalassemic homozygotes. The overall carrier frequency of βTT was 4.05% and reinforces the differential frequency of β-thalassemia trait in schoolchildren from Delhi and Mumbai and the higher incidence of hemoglobin D in Punjabis as reported previously. The birth incidence calculated thereof for homozygous thalassemics would be 11,316 per year which are added each year to the existing load of homozygous thalassemics. This is much higher than the previously reported number of births annually. Hence suitable control measures need to be undertaken urgently in India. |
format | Text |
id | pubmed-2927789 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Medknow Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-29277892010-09-13 Frequency of β-thalassemia trait and other hemoglobinopathies in northern and western India Madan, Nishi Sharma, Satendra Sood, S. K. Colah, Roshan Bhatia, (Late) H. M. Indian J Hum Genet Original Article INTRODUCTION: India is an ethnically diverse country with an approximate population of 1.2 billion. The frequency of beta-thalassemia trait (βTT) has variously been reported from <1% to 17% and an average of 3.3%. Most of these studies have been carried out on small population groups and some have been based on hospital-based patients. There is also a variation in the prevalence of hemoglobinopathies in different regions and population groups in the country. A high frequency of Hb D has been reported from the North in the Punjabi population, Hb E in the eastern region of India and Hb S is mainly reported from populations of tribal origin from different parts of the country. OBJECTIVES: To study the gene frequency of βTT and other hemoglobinopathies in three regions East (Kolkata), West (Mumbai) and North (Delhi) in larghe population group (schoolchildren) for a more accurate assessment of gene frequency for planning of control programmes for haemoglobinopathies. MATERIALS AND METHODS: This study included 5408 children from 11 schools in Delhi, 5682 from 75 schools in Mumbai and 957 schoolchildren from Kolkata who were screened for βTT and haemoglobinopathies. These included 5684 children from 75 schools in Mumbai and 5408 children from 11 schools in Delhi. Children were 11-18 years of age of both sexes. The final report is, however, only on 11090 schoolchildren from Mumbai and Delhi as data from Kolkata was restricted both in numbers and objectives and could not be included for comparison. RESULTS: The overall gene frequency of βTT in Mumbai and Delhi was 4.05% being 2.68% and 5.47% in children of the two cities respectively. In Mumbai, the gene frequency was evenly distributed. Majority of the children with βTT from Mumbai were from Marathi (38.9%) and Gujarati (25%) speaking groups. Gene frequency was >5% in Bhatias, Khatris, Lohanas and Schedule Castes. In Delhi, a higher incidence was observed in schoolchildren of North and West Delhi (5.8-9.2%). The schoolchildren of North and West Delhi comprised predominantly of Punjabi origin compared to children in the South of the city (2.2%, 2.3%). When analyzed state-wise, the highest incidence was observed in children of Punjabi origin (7.6%) and was >4% from several other states. Majority of the traits from Mumbai were anemic (95.1% male and 85.6% in female). The prevalence of anemia was lower (62.7% male and 58.4% female) children with βTT from Delhi. This was a reflection of the higher prevalence of anemia in children without hemoglobinopathy in Mumbai than in Delhi. Nutritional deficiency was probably more severe and rampant in children Mumbai. Gene frequency of Hb D was greater in schoolchildren from Delhi (1.1%) than in Mumbai (0.7%). Hb S trait (0.2%) was observed exclusively in children from Mumbai. A low incidence of Hb E trait (0.04%) was seen in children in Mumbai. A higher incidence is reported from the East. The number of cases studied from the eastern region was small as the data from the East (Kolkata) could not be included in the analysis. CONCLUSION: This study comprises a larger number of children studied for the gene frequency of βTT and other hemoglobinopathies from India. Population groups with higher gene frequencies require screening programmes and facilities for antenatal diagnosis as well as increased awareness and educational programmes to control the birth of thalassemic homozygotes. The overall carrier frequency of βTT was 4.05% and reinforces the differential frequency of β-thalassemia trait in schoolchildren from Delhi and Mumbai and the higher incidence of hemoglobin D in Punjabis as reported previously. The birth incidence calculated thereof for homozygous thalassemics would be 11,316 per year which are added each year to the existing load of homozygous thalassemics. This is much higher than the previously reported number of births annually. Hence suitable control measures need to be undertaken urgently in India. Medknow Publications 2010 /pmc/articles/PMC2927789/ /pubmed/20838487 http://dx.doi.org/10.4103/0971-6866.64941 Text en © Indian Journal of Human Genetics http://creativecommons.org/licenses/by/2.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Madan, Nishi Sharma, Satendra Sood, S. K. Colah, Roshan Bhatia, (Late) H. M. Frequency of β-thalassemia trait and other hemoglobinopathies in northern and western India |
title | Frequency of β-thalassemia trait and other hemoglobinopathies in northern and western India |
title_full | Frequency of β-thalassemia trait and other hemoglobinopathies in northern and western India |
title_fullStr | Frequency of β-thalassemia trait and other hemoglobinopathies in northern and western India |
title_full_unstemmed | Frequency of β-thalassemia trait and other hemoglobinopathies in northern and western India |
title_short | Frequency of β-thalassemia trait and other hemoglobinopathies in northern and western India |
title_sort | frequency of β-thalassemia trait and other hemoglobinopathies in northern and western india |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2927789/ https://www.ncbi.nlm.nih.gov/pubmed/20838487 http://dx.doi.org/10.4103/0971-6866.64941 |
work_keys_str_mv | AT madannishi frequencyofbthalassemiatraitandotherhemoglobinopathiesinnorthernandwesternindia AT sharmasatendra frequencyofbthalassemiatraitandotherhemoglobinopathiesinnorthernandwesternindia AT soodsk frequencyofbthalassemiatraitandotherhemoglobinopathiesinnorthernandwesternindia AT colahroshan frequencyofbthalassemiatraitandotherhemoglobinopathiesinnorthernandwesternindia AT bhatialatehm frequencyofbthalassemiatraitandotherhemoglobinopathiesinnorthernandwesternindia |