Cargando…
β-Cell Failure in Diet-Induced Obese Mice Stratified According to Body Weight Gain: Secretory Dysfunction and Altered Islet Lipid Metabolism Without Steatosis or Reduced β-Cell Mass
OBJECTIVE: C57Bl/6 mice develop obesity and mild hyperglycemia when fed a high-fat diet (HFD). Although diet-induced obesity (DIO) is a widely studied model of type 2 diabetes, little is known about β-cell failure in these mice. RESEARCH DESIGN AND METHODS: DIO mice were separated in two groups acco...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
American Diabetes Association
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2927940/ https://www.ncbi.nlm.nih.gov/pubmed/20547980 http://dx.doi.org/10.2337/db09-1452 |
_version_ | 1782185803410046976 |
---|---|
author | Peyot, Marie-Line Pepin, Emilie Lamontagne, Julien Latour, Martin G. Zarrouki, Bader Lussier, Roxane Pineda, Marco Jetton, Thomas L. Madiraju, S.R. Murthy Joly, Erik Prentki, Marc |
author_facet | Peyot, Marie-Line Pepin, Emilie Lamontagne, Julien Latour, Martin G. Zarrouki, Bader Lussier, Roxane Pineda, Marco Jetton, Thomas L. Madiraju, S.R. Murthy Joly, Erik Prentki, Marc |
author_sort | Peyot, Marie-Line |
collection | PubMed |
description | OBJECTIVE: C57Bl/6 mice develop obesity and mild hyperglycemia when fed a high-fat diet (HFD). Although diet-induced obesity (DIO) is a widely studied model of type 2 diabetes, little is known about β-cell failure in these mice. RESEARCH DESIGN AND METHODS: DIO mice were separated in two groups according to body weight gain: low- and high-HFD responders (LDR and HDR). We examined whether mild hyperglycemia in HDR mice is due to reduced β-cell mass or function and studied islet metabolism and signaling. RESULTS: HDR mice were more obese, hyperinsulinemic, insulin resistant, and hyperglycemic and showed a more altered plasma lipid profile than LDR. LDR mice largely compensated insulin resistance, whereas HDR showed perturbed glucose homeostasis. Neither LDR nor HDR mice showed reduced β-cell mass, altered islet glucose metabolism, and triglyceride deposition. Insulin secretion in response to glucose, KCl, and arginine was impaired in LDR and almost abolished in HDR islets. Palmitate partially restored glucose- and KCl-stimulated secretion. The glucose-induced rise in ATP was reduced in both DIO groups, and the glucose-induced rise in Ca(2+) was reduced in HDR islets relatively to LDR. Glucose-stimulated lipolysis was decreased in LDR and HDR islets, whereas fat oxidation was increased in HDR islets only. Fatty acid esterification processes were markedly diminished, and free cholesterol accumulated in HDR islets. CONCLUSIONS: β-Cell failure in HDR mice is not due to reduced β-cell mass and glucose metabolism or steatosis but to a secretory dysfunction that is possibly due to altered ATP/Ca(2+) and lipid signaling, as well as free cholesterol deposition. |
format | Text |
id | pubmed-2927940 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | American Diabetes Association |
record_format | MEDLINE/PubMed |
spelling | pubmed-29279402011-09-01 β-Cell Failure in Diet-Induced Obese Mice Stratified According to Body Weight Gain: Secretory Dysfunction and Altered Islet Lipid Metabolism Without Steatosis or Reduced β-Cell Mass Peyot, Marie-Line Pepin, Emilie Lamontagne, Julien Latour, Martin G. Zarrouki, Bader Lussier, Roxane Pineda, Marco Jetton, Thomas L. Madiraju, S.R. Murthy Joly, Erik Prentki, Marc Diabetes Islet Studies OBJECTIVE: C57Bl/6 mice develop obesity and mild hyperglycemia when fed a high-fat diet (HFD). Although diet-induced obesity (DIO) is a widely studied model of type 2 diabetes, little is known about β-cell failure in these mice. RESEARCH DESIGN AND METHODS: DIO mice were separated in two groups according to body weight gain: low- and high-HFD responders (LDR and HDR). We examined whether mild hyperglycemia in HDR mice is due to reduced β-cell mass or function and studied islet metabolism and signaling. RESULTS: HDR mice were more obese, hyperinsulinemic, insulin resistant, and hyperglycemic and showed a more altered plasma lipid profile than LDR. LDR mice largely compensated insulin resistance, whereas HDR showed perturbed glucose homeostasis. Neither LDR nor HDR mice showed reduced β-cell mass, altered islet glucose metabolism, and triglyceride deposition. Insulin secretion in response to glucose, KCl, and arginine was impaired in LDR and almost abolished in HDR islets. Palmitate partially restored glucose- and KCl-stimulated secretion. The glucose-induced rise in ATP was reduced in both DIO groups, and the glucose-induced rise in Ca(2+) was reduced in HDR islets relatively to LDR. Glucose-stimulated lipolysis was decreased in LDR and HDR islets, whereas fat oxidation was increased in HDR islets only. Fatty acid esterification processes were markedly diminished, and free cholesterol accumulated in HDR islets. CONCLUSIONS: β-Cell failure in HDR mice is not due to reduced β-cell mass and glucose metabolism or steatosis but to a secretory dysfunction that is possibly due to altered ATP/Ca(2+) and lipid signaling, as well as free cholesterol deposition. American Diabetes Association 2010-09 2010-06-14 /pmc/articles/PMC2927940/ /pubmed/20547980 http://dx.doi.org/10.2337/db09-1452 Text en © 2010 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details. |
spellingShingle | Islet Studies Peyot, Marie-Line Pepin, Emilie Lamontagne, Julien Latour, Martin G. Zarrouki, Bader Lussier, Roxane Pineda, Marco Jetton, Thomas L. Madiraju, S.R. Murthy Joly, Erik Prentki, Marc β-Cell Failure in Diet-Induced Obese Mice Stratified According to Body Weight Gain: Secretory Dysfunction and Altered Islet Lipid Metabolism Without Steatosis or Reduced β-Cell Mass |
title | β-Cell Failure in Diet-Induced Obese Mice Stratified According to Body Weight Gain: Secretory Dysfunction and Altered Islet Lipid Metabolism Without Steatosis or Reduced β-Cell Mass |
title_full | β-Cell Failure in Diet-Induced Obese Mice Stratified According to Body Weight Gain: Secretory Dysfunction and Altered Islet Lipid Metabolism Without Steatosis or Reduced β-Cell Mass |
title_fullStr | β-Cell Failure in Diet-Induced Obese Mice Stratified According to Body Weight Gain: Secretory Dysfunction and Altered Islet Lipid Metabolism Without Steatosis or Reduced β-Cell Mass |
title_full_unstemmed | β-Cell Failure in Diet-Induced Obese Mice Stratified According to Body Weight Gain: Secretory Dysfunction and Altered Islet Lipid Metabolism Without Steatosis or Reduced β-Cell Mass |
title_short | β-Cell Failure in Diet-Induced Obese Mice Stratified According to Body Weight Gain: Secretory Dysfunction and Altered Islet Lipid Metabolism Without Steatosis or Reduced β-Cell Mass |
title_sort | β-cell failure in diet-induced obese mice stratified according to body weight gain: secretory dysfunction and altered islet lipid metabolism without steatosis or reduced β-cell mass |
topic | Islet Studies |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2927940/ https://www.ncbi.nlm.nih.gov/pubmed/20547980 http://dx.doi.org/10.2337/db09-1452 |
work_keys_str_mv | AT peyotmarieline bcellfailureindietinducedobesemicestratifiedaccordingtobodyweightgainsecretorydysfunctionandalteredisletlipidmetabolismwithoutsteatosisorreducedbcellmass AT pepinemilie bcellfailureindietinducedobesemicestratifiedaccordingtobodyweightgainsecretorydysfunctionandalteredisletlipidmetabolismwithoutsteatosisorreducedbcellmass AT lamontagnejulien bcellfailureindietinducedobesemicestratifiedaccordingtobodyweightgainsecretorydysfunctionandalteredisletlipidmetabolismwithoutsteatosisorreducedbcellmass AT latourmarting bcellfailureindietinducedobesemicestratifiedaccordingtobodyweightgainsecretorydysfunctionandalteredisletlipidmetabolismwithoutsteatosisorreducedbcellmass AT zarroukibader bcellfailureindietinducedobesemicestratifiedaccordingtobodyweightgainsecretorydysfunctionandalteredisletlipidmetabolismwithoutsteatosisorreducedbcellmass AT lussierroxane bcellfailureindietinducedobesemicestratifiedaccordingtobodyweightgainsecretorydysfunctionandalteredisletlipidmetabolismwithoutsteatosisorreducedbcellmass AT pinedamarco bcellfailureindietinducedobesemicestratifiedaccordingtobodyweightgainsecretorydysfunctionandalteredisletlipidmetabolismwithoutsteatosisorreducedbcellmass AT jettonthomasl bcellfailureindietinducedobesemicestratifiedaccordingtobodyweightgainsecretorydysfunctionandalteredisletlipidmetabolismwithoutsteatosisorreducedbcellmass AT madirajusrmurthy bcellfailureindietinducedobesemicestratifiedaccordingtobodyweightgainsecretorydysfunctionandalteredisletlipidmetabolismwithoutsteatosisorreducedbcellmass AT jolyerik bcellfailureindietinducedobesemicestratifiedaccordingtobodyweightgainsecretorydysfunctionandalteredisletlipidmetabolismwithoutsteatosisorreducedbcellmass AT prentkimarc bcellfailureindietinducedobesemicestratifiedaccordingtobodyweightgainsecretorydysfunctionandalteredisletlipidmetabolismwithoutsteatosisorreducedbcellmass |