Cargando…
Dynamics of dendritic cell maturation are identified through a novel filtering strategy applied to biological time-course microarray replicates
BACKGROUND: Dendritic cells (DC) play a central role in primary immune responses and become potent stimulators of the adaptive immune response after undergoing the critical process of maturation. Understanding the dynamics of DC maturation would provide key insights into this important process. Time...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2928180/ https://www.ncbi.nlm.nih.gov/pubmed/20682054 http://dx.doi.org/10.1186/1471-2172-11-41 |
_version_ | 1782185830895321088 |
---|---|
author | Olex, Amy L Hiltbold, Elizabeth M Leng, Xiaoyan Fetrow, Jacquelyn S |
author_facet | Olex, Amy L Hiltbold, Elizabeth M Leng, Xiaoyan Fetrow, Jacquelyn S |
author_sort | Olex, Amy L |
collection | PubMed |
description | BACKGROUND: Dendritic cells (DC) play a central role in primary immune responses and become potent stimulators of the adaptive immune response after undergoing the critical process of maturation. Understanding the dynamics of DC maturation would provide key insights into this important process. Time course microarray experiments can provide unique insights into DC maturation dynamics. Replicate experiments are necessary to address the issues of experimental and biological variability. Statistical methods and averaging are often used to identify significant signals. Here a novel strategy for filtering of replicate time course microarray data, which identifies consistent signals between the replicates, is presented and applied to a DC time course microarray experiment. RESULTS: The temporal dynamics of DC maturation were studied by stimulating DC with poly(I:C) and following gene expression at 5 time points from 1 to 24 hours. The novel filtering strategy uses standard statistical and fold change techniques, along with the consistency of replicate temporal profiles, to identify those differentially expressed genes that were consistent in two biological replicate experiments. To address the issue of cluster reproducibility a consensus clustering method, which identifies clusters of genes whose expression varies consistently between replicates, was also developed and applied. Analysis of the resulting clusters revealed many known and novel characteristics of DC maturation, such as the up-regulation of specific immune response pathways. Intriguingly, more genes were down-regulated than up-regulated. Results identify a more comprehensive program of down-regulation, including many genes involved in protein synthesis, metabolism, and housekeeping needed for maintenance of cellular integrity and metabolism. CONCLUSIONS: The new filtering strategy emphasizes the importance of consistent and reproducible results when analyzing microarray data and utilizes consistency between replicate experiments as a criterion in both feature selection and clustering, without averaging or otherwise combining replicate data. Observation of a significant down-regulation program during DC maturation indicates that DC are preparing for cell death and provides a path to better understand the process. This new filtering strategy can be adapted for use in analyzing other large-scale time course data sets with replicates. |
format | Text |
id | pubmed-2928180 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-29281802010-08-26 Dynamics of dendritic cell maturation are identified through a novel filtering strategy applied to biological time-course microarray replicates Olex, Amy L Hiltbold, Elizabeth M Leng, Xiaoyan Fetrow, Jacquelyn S BMC Immunol Research Article BACKGROUND: Dendritic cells (DC) play a central role in primary immune responses and become potent stimulators of the adaptive immune response after undergoing the critical process of maturation. Understanding the dynamics of DC maturation would provide key insights into this important process. Time course microarray experiments can provide unique insights into DC maturation dynamics. Replicate experiments are necessary to address the issues of experimental and biological variability. Statistical methods and averaging are often used to identify significant signals. Here a novel strategy for filtering of replicate time course microarray data, which identifies consistent signals between the replicates, is presented and applied to a DC time course microarray experiment. RESULTS: The temporal dynamics of DC maturation were studied by stimulating DC with poly(I:C) and following gene expression at 5 time points from 1 to 24 hours. The novel filtering strategy uses standard statistical and fold change techniques, along with the consistency of replicate temporal profiles, to identify those differentially expressed genes that were consistent in two biological replicate experiments. To address the issue of cluster reproducibility a consensus clustering method, which identifies clusters of genes whose expression varies consistently between replicates, was also developed and applied. Analysis of the resulting clusters revealed many known and novel characteristics of DC maturation, such as the up-regulation of specific immune response pathways. Intriguingly, more genes were down-regulated than up-regulated. Results identify a more comprehensive program of down-regulation, including many genes involved in protein synthesis, metabolism, and housekeeping needed for maintenance of cellular integrity and metabolism. CONCLUSIONS: The new filtering strategy emphasizes the importance of consistent and reproducible results when analyzing microarray data and utilizes consistency between replicate experiments as a criterion in both feature selection and clustering, without averaging or otherwise combining replicate data. Observation of a significant down-regulation program during DC maturation indicates that DC are preparing for cell death and provides a path to better understand the process. This new filtering strategy can be adapted for use in analyzing other large-scale time course data sets with replicates. BioMed Central 2010-08-03 /pmc/articles/PMC2928180/ /pubmed/20682054 http://dx.doi.org/10.1186/1471-2172-11-41 Text en Copyright ©2010 Olex et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Olex, Amy L Hiltbold, Elizabeth M Leng, Xiaoyan Fetrow, Jacquelyn S Dynamics of dendritic cell maturation are identified through a novel filtering strategy applied to biological time-course microarray replicates |
title | Dynamics of dendritic cell maturation are identified through a novel filtering strategy applied to biological time-course microarray replicates |
title_full | Dynamics of dendritic cell maturation are identified through a novel filtering strategy applied to biological time-course microarray replicates |
title_fullStr | Dynamics of dendritic cell maturation are identified through a novel filtering strategy applied to biological time-course microarray replicates |
title_full_unstemmed | Dynamics of dendritic cell maturation are identified through a novel filtering strategy applied to biological time-course microarray replicates |
title_short | Dynamics of dendritic cell maturation are identified through a novel filtering strategy applied to biological time-course microarray replicates |
title_sort | dynamics of dendritic cell maturation are identified through a novel filtering strategy applied to biological time-course microarray replicates |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2928180/ https://www.ncbi.nlm.nih.gov/pubmed/20682054 http://dx.doi.org/10.1186/1471-2172-11-41 |
work_keys_str_mv | AT olexamyl dynamicsofdendriticcellmaturationareidentifiedthroughanovelfilteringstrategyappliedtobiologicaltimecoursemicroarrayreplicates AT hiltboldelizabethm dynamicsofdendriticcellmaturationareidentifiedthroughanovelfilteringstrategyappliedtobiologicaltimecoursemicroarrayreplicates AT lengxiaoyan dynamicsofdendriticcellmaturationareidentifiedthroughanovelfilteringstrategyappliedtobiologicaltimecoursemicroarrayreplicates AT fetrowjacquelyns dynamicsofdendriticcellmaturationareidentifiedthroughanovelfilteringstrategyappliedtobiologicaltimecoursemicroarrayreplicates |