Cargando…

Genomic comparisons of Brucella spp. and closely related bacteria using base compositional and proteome based methods

BACKGROUND: Classification of bacteria within the genus Brucella has been difficult due in part to considerable genomic homogeneity between the different species and biovars, in spite of clear differences in phenotypes. Therefore, many different methods have been used to assess Brucella taxonomy. In...

Descripción completa

Detalles Bibliográficos
Autores principales: Bohlin, Jon, Snipen, Lars, Cloeckaert, Axel, Lagesen, Karin, Ussery, David, Kristoffersen, Anja B, Godfroid, Jacques
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2928237/
https://www.ncbi.nlm.nih.gov/pubmed/20707916
http://dx.doi.org/10.1186/1471-2148-10-249
_version_ 1782185842203164672
author Bohlin, Jon
Snipen, Lars
Cloeckaert, Axel
Lagesen, Karin
Ussery, David
Kristoffersen, Anja B
Godfroid, Jacques
author_facet Bohlin, Jon
Snipen, Lars
Cloeckaert, Axel
Lagesen, Karin
Ussery, David
Kristoffersen, Anja B
Godfroid, Jacques
author_sort Bohlin, Jon
collection PubMed
description BACKGROUND: Classification of bacteria within the genus Brucella has been difficult due in part to considerable genomic homogeneity between the different species and biovars, in spite of clear differences in phenotypes. Therefore, many different methods have been used to assess Brucella taxonomy. In the current work, we examine 32 sequenced genomes from genus Brucella representing the six classical species, as well as more recently described species, using bioinformatical methods. Comparisons were made at the level of genomic DNA using oligonucleotide based methods (Markov chain based genomic signatures, genomic codon and amino acid frequencies based comparisons) and proteomes (all-against-all BLAST protein comparisons and pan-genomic analyses). RESULTS: We found that the oligonucleotide based methods gave different results compared to that of the proteome based methods. Differences were also found between the oligonucleotide based methods used. Whilst the Markov chain based genomic signatures grouped the different species in genus Brucella according to host preference, the codon and amino acid frequencies based methods reflected small differences between the Brucella species. Only minor differences could be detected between all genera included in this study using the codon and amino acid frequencies based methods. Proteome comparisons were found to be in strong accordance with current Brucella taxonomy indicating a remarkable association between gene gain or loss on one hand and mutations in marker genes on the other. The proteome based methods found greater similarity between Brucella species and Ochrobactrum species than between species within genus Agrobacterium compared to each other. In other words, proteome comparisons of species within genus Agrobacterium were found to be more diverse than proteome comparisons between species in genus Brucella and genus Ochrobactrum. Pan-genomic analyses indicated that uptake of DNA from outside genus Brucella appears to be limited. CONCLUSIONS: While both the proteome based methods and the Markov chain based genomic signatures were able to reflect environmental diversity between the different species and strains of genus Brucella, the genomic codon and amino acid frequencies based comparisons were not found adequate for such comparisons. The proteome comparison based phylogenies of the species in genus Brucella showed a surprising consistency with current Brucella taxonomy.
format Text
id pubmed-2928237
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-29282372010-08-26 Genomic comparisons of Brucella spp. and closely related bacteria using base compositional and proteome based methods Bohlin, Jon Snipen, Lars Cloeckaert, Axel Lagesen, Karin Ussery, David Kristoffersen, Anja B Godfroid, Jacques BMC Evol Biol Research Article BACKGROUND: Classification of bacteria within the genus Brucella has been difficult due in part to considerable genomic homogeneity between the different species and biovars, in spite of clear differences in phenotypes. Therefore, many different methods have been used to assess Brucella taxonomy. In the current work, we examine 32 sequenced genomes from genus Brucella representing the six classical species, as well as more recently described species, using bioinformatical methods. Comparisons were made at the level of genomic DNA using oligonucleotide based methods (Markov chain based genomic signatures, genomic codon and amino acid frequencies based comparisons) and proteomes (all-against-all BLAST protein comparisons and pan-genomic analyses). RESULTS: We found that the oligonucleotide based methods gave different results compared to that of the proteome based methods. Differences were also found between the oligonucleotide based methods used. Whilst the Markov chain based genomic signatures grouped the different species in genus Brucella according to host preference, the codon and amino acid frequencies based methods reflected small differences between the Brucella species. Only minor differences could be detected between all genera included in this study using the codon and amino acid frequencies based methods. Proteome comparisons were found to be in strong accordance with current Brucella taxonomy indicating a remarkable association between gene gain or loss on one hand and mutations in marker genes on the other. The proteome based methods found greater similarity between Brucella species and Ochrobactrum species than between species within genus Agrobacterium compared to each other. In other words, proteome comparisons of species within genus Agrobacterium were found to be more diverse than proteome comparisons between species in genus Brucella and genus Ochrobactrum. Pan-genomic analyses indicated that uptake of DNA from outside genus Brucella appears to be limited. CONCLUSIONS: While both the proteome based methods and the Markov chain based genomic signatures were able to reflect environmental diversity between the different species and strains of genus Brucella, the genomic codon and amino acid frequencies based comparisons were not found adequate for such comparisons. The proteome comparison based phylogenies of the species in genus Brucella showed a surprising consistency with current Brucella taxonomy. BioMed Central 2010-08-13 /pmc/articles/PMC2928237/ /pubmed/20707916 http://dx.doi.org/10.1186/1471-2148-10-249 Text en Copyright ©2010 Bohlin et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Bohlin, Jon
Snipen, Lars
Cloeckaert, Axel
Lagesen, Karin
Ussery, David
Kristoffersen, Anja B
Godfroid, Jacques
Genomic comparisons of Brucella spp. and closely related bacteria using base compositional and proteome based methods
title Genomic comparisons of Brucella spp. and closely related bacteria using base compositional and proteome based methods
title_full Genomic comparisons of Brucella spp. and closely related bacteria using base compositional and proteome based methods
title_fullStr Genomic comparisons of Brucella spp. and closely related bacteria using base compositional and proteome based methods
title_full_unstemmed Genomic comparisons of Brucella spp. and closely related bacteria using base compositional and proteome based methods
title_short Genomic comparisons of Brucella spp. and closely related bacteria using base compositional and proteome based methods
title_sort genomic comparisons of brucella spp. and closely related bacteria using base compositional and proteome based methods
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2928237/
https://www.ncbi.nlm.nih.gov/pubmed/20707916
http://dx.doi.org/10.1186/1471-2148-10-249
work_keys_str_mv AT bohlinjon genomiccomparisonsofbrucellasppandcloselyrelatedbacteriausingbasecompositionalandproteomebasedmethods
AT snipenlars genomiccomparisonsofbrucellasppandcloselyrelatedbacteriausingbasecompositionalandproteomebasedmethods
AT cloeckaertaxel genomiccomparisonsofbrucellasppandcloselyrelatedbacteriausingbasecompositionalandproteomebasedmethods
AT lagesenkarin genomiccomparisonsofbrucellasppandcloselyrelatedbacteriausingbasecompositionalandproteomebasedmethods
AT usserydavid genomiccomparisonsofbrucellasppandcloselyrelatedbacteriausingbasecompositionalandproteomebasedmethods
AT kristoffersenanjab genomiccomparisonsofbrucellasppandcloselyrelatedbacteriausingbasecompositionalandproteomebasedmethods
AT godfroidjacques genomiccomparisonsofbrucellasppandcloselyrelatedbacteriausingbasecompositionalandproteomebasedmethods