Cargando…
Notch and Wnt Signaling Mediated Rod Photoreceptor Regeneration by Müller Cells in Adult Mammalian Retina
BACKGROUND: Evidence emerging from a variety of approaches used in different species suggests that Müller cell function may extend beyond its role of maintaining retinal homeostasis to that of progenitors in the adult retina. Enriched Müller cells in vitro or those that re-enter cell cycle in respon...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2928741/ https://www.ncbi.nlm.nih.gov/pubmed/20865053 http://dx.doi.org/10.1371/journal.pone.0012425 |
_version_ | 1782185875906494464 |
---|---|
author | Del Debbio, Carolina Beltrame Balasubramanian, Sudha Parameswaran, Sowmya Chaudhuri, Anathbandhu Qiu, Fang Ahmad, Iqbal |
author_facet | Del Debbio, Carolina Beltrame Balasubramanian, Sudha Parameswaran, Sowmya Chaudhuri, Anathbandhu Qiu, Fang Ahmad, Iqbal |
author_sort | Del Debbio, Carolina Beltrame |
collection | PubMed |
description | BACKGROUND: Evidence emerging from a variety of approaches used in different species suggests that Müller cell function may extend beyond its role of maintaining retinal homeostasis to that of progenitors in the adult retina. Enriched Müller cells in vitro or those that re-enter cell cycle in response to neurotoxin-damage to retina in vivo display multipotential and self-renewing capacities, the cardinal features of stem cells. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrate that Notch and Wnt signaling activate Müller cells through their canonical pathways and that a rare subset of activated Müller cells differentiates along rod photoreceptor lineage in the outer nuclear layer. The differentiation of activated Müller cells along photoreceptor lineage is confirmed by multiple approaches that included Hoechst dye efflux analysis, genetic analysis using retina from Nrl-GFP mice, and lineage tracing using GS-GFP lentivirus in wild type and rd mice in vitro and S334ter rats in vivo. Examination of S334ter rats for head-neck tracking of visual stimuli, a behavioral measure of light perception, demonstrates a significant improvement in light perception in animals treated to activate Müller cells. The number of activated Müller cells with rod photoreceptor phenotype in treated animals correlates with the improvement in their light perception. CONCLUSION/SIGNIFICANCE: In summary, our results provide a proof of principle for non-neurotoxin-mediated activation of Müller cells through Notch and Wnt signaling toward the regeneration of rod photoreceptors. |
format | Text |
id | pubmed-2928741 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-29287412010-09-23 Notch and Wnt Signaling Mediated Rod Photoreceptor Regeneration by Müller Cells in Adult Mammalian Retina Del Debbio, Carolina Beltrame Balasubramanian, Sudha Parameswaran, Sowmya Chaudhuri, Anathbandhu Qiu, Fang Ahmad, Iqbal PLoS One Research Article BACKGROUND: Evidence emerging from a variety of approaches used in different species suggests that Müller cell function may extend beyond its role of maintaining retinal homeostasis to that of progenitors in the adult retina. Enriched Müller cells in vitro or those that re-enter cell cycle in response to neurotoxin-damage to retina in vivo display multipotential and self-renewing capacities, the cardinal features of stem cells. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrate that Notch and Wnt signaling activate Müller cells through their canonical pathways and that a rare subset of activated Müller cells differentiates along rod photoreceptor lineage in the outer nuclear layer. The differentiation of activated Müller cells along photoreceptor lineage is confirmed by multiple approaches that included Hoechst dye efflux analysis, genetic analysis using retina from Nrl-GFP mice, and lineage tracing using GS-GFP lentivirus in wild type and rd mice in vitro and S334ter rats in vivo. Examination of S334ter rats for head-neck tracking of visual stimuli, a behavioral measure of light perception, demonstrates a significant improvement in light perception in animals treated to activate Müller cells. The number of activated Müller cells with rod photoreceptor phenotype in treated animals correlates with the improvement in their light perception. CONCLUSION/SIGNIFICANCE: In summary, our results provide a proof of principle for non-neurotoxin-mediated activation of Müller cells through Notch and Wnt signaling toward the regeneration of rod photoreceptors. Public Library of Science 2010-08-26 /pmc/articles/PMC2928741/ /pubmed/20865053 http://dx.doi.org/10.1371/journal.pone.0012425 Text en Del Debbio et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Del Debbio, Carolina Beltrame Balasubramanian, Sudha Parameswaran, Sowmya Chaudhuri, Anathbandhu Qiu, Fang Ahmad, Iqbal Notch and Wnt Signaling Mediated Rod Photoreceptor Regeneration by Müller Cells in Adult Mammalian Retina |
title | Notch and Wnt Signaling Mediated Rod Photoreceptor Regeneration by Müller Cells in Adult Mammalian Retina |
title_full | Notch and Wnt Signaling Mediated Rod Photoreceptor Regeneration by Müller Cells in Adult Mammalian Retina |
title_fullStr | Notch and Wnt Signaling Mediated Rod Photoreceptor Regeneration by Müller Cells in Adult Mammalian Retina |
title_full_unstemmed | Notch and Wnt Signaling Mediated Rod Photoreceptor Regeneration by Müller Cells in Adult Mammalian Retina |
title_short | Notch and Wnt Signaling Mediated Rod Photoreceptor Regeneration by Müller Cells in Adult Mammalian Retina |
title_sort | notch and wnt signaling mediated rod photoreceptor regeneration by müller cells in adult mammalian retina |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2928741/ https://www.ncbi.nlm.nih.gov/pubmed/20865053 http://dx.doi.org/10.1371/journal.pone.0012425 |
work_keys_str_mv | AT deldebbiocarolinabeltrame notchandwntsignalingmediatedrodphotoreceptorregenerationbymullercellsinadultmammalianretina AT balasubramaniansudha notchandwntsignalingmediatedrodphotoreceptorregenerationbymullercellsinadultmammalianretina AT parameswaransowmya notchandwntsignalingmediatedrodphotoreceptorregenerationbymullercellsinadultmammalianretina AT chaudhurianathbandhu notchandwntsignalingmediatedrodphotoreceptorregenerationbymullercellsinadultmammalianretina AT qiufang notchandwntsignalingmediatedrodphotoreceptorregenerationbymullercellsinadultmammalianretina AT ahmadiqbal notchandwntsignalingmediatedrodphotoreceptorregenerationbymullercellsinadultmammalianretina |