Cargando…
A Multi-Step Process of Viral Adaptation to a Mutagenic Nucleoside Analogue by Modulation of Transition Types Leads to Extinction-Escape
Resistance of viruses to mutagenic agents is an important problem for the development of lethal mutagenesis as an antiviral strategy. Previous studies with RNA viruses have documented that resistance to the mutagenic nucleoside analogue ribavirin (1-β-D-ribofuranosyl-1-H-1,2,4-triazole-3-carboxamide...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2928812/ https://www.ncbi.nlm.nih.gov/pubmed/20865120 http://dx.doi.org/10.1371/journal.ppat.1001072 |
_version_ | 1782185892648058880 |
---|---|
author | Agudo, Rubén Ferrer-Orta, Cristina Arias, Armando de la Higuera, Ignacio Perales, Celia Pérez-Luque, Rosa Verdaguer, Nuria Domingo, Esteban |
author_facet | Agudo, Rubén Ferrer-Orta, Cristina Arias, Armando de la Higuera, Ignacio Perales, Celia Pérez-Luque, Rosa Verdaguer, Nuria Domingo, Esteban |
author_sort | Agudo, Rubén |
collection | PubMed |
description | Resistance of viruses to mutagenic agents is an important problem for the development of lethal mutagenesis as an antiviral strategy. Previous studies with RNA viruses have documented that resistance to the mutagenic nucleoside analogue ribavirin (1-β-D-ribofuranosyl-1-H-1,2,4-triazole-3-carboxamide) is mediated by amino acid substitutions in the viral polymerase that either increase the general template copying fidelity of the enzyme or decrease the incorporation of ribavirin into RNA. Here we describe experiments that show that replication of the important picornavirus pathogen foot-and-mouth disease virus (FMDV) in the presence of increasing concentrations of ribavirin results in the sequential incorporation of three amino acid substitutions (M296I, P44S and P169S) in the viral polymerase (3D). The main biological effect of these substitutions is to attenuate the consequences of the mutagenic activity of ribavirin —by avoiding the biased repertoire of transition mutations produced by this purine analogue—and to maintain the replicative fitness of the virus which is able to escape extinction by ribavirin. This is achieved through alteration of the pairing behavior of ribavirin-triphosphate (RTP), as evidenced by in vitro polymerization assays with purified mutant 3Ds. Comparison of the three-dimensional structure of wild type and mutant polymerases suggests that the amino acid substitutions alter the position of the template RNA in the entry channel of the enzyme, thereby affecting nucleotide recognition. The results provide evidence of a new mechanism of resistance to a mutagenic nucleoside analogue which allows the virus to maintain a balance among mutation types introduced into progeny genomes during replication under strong mutagenic pressure. |
format | Text |
id | pubmed-2928812 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-29288122010-09-23 A Multi-Step Process of Viral Adaptation to a Mutagenic Nucleoside Analogue by Modulation of Transition Types Leads to Extinction-Escape Agudo, Rubén Ferrer-Orta, Cristina Arias, Armando de la Higuera, Ignacio Perales, Celia Pérez-Luque, Rosa Verdaguer, Nuria Domingo, Esteban PLoS Pathog Research Article Resistance of viruses to mutagenic agents is an important problem for the development of lethal mutagenesis as an antiviral strategy. Previous studies with RNA viruses have documented that resistance to the mutagenic nucleoside analogue ribavirin (1-β-D-ribofuranosyl-1-H-1,2,4-triazole-3-carboxamide) is mediated by amino acid substitutions in the viral polymerase that either increase the general template copying fidelity of the enzyme or decrease the incorporation of ribavirin into RNA. Here we describe experiments that show that replication of the important picornavirus pathogen foot-and-mouth disease virus (FMDV) in the presence of increasing concentrations of ribavirin results in the sequential incorporation of three amino acid substitutions (M296I, P44S and P169S) in the viral polymerase (3D). The main biological effect of these substitutions is to attenuate the consequences of the mutagenic activity of ribavirin —by avoiding the biased repertoire of transition mutations produced by this purine analogue—and to maintain the replicative fitness of the virus which is able to escape extinction by ribavirin. This is achieved through alteration of the pairing behavior of ribavirin-triphosphate (RTP), as evidenced by in vitro polymerization assays with purified mutant 3Ds. Comparison of the three-dimensional structure of wild type and mutant polymerases suggests that the amino acid substitutions alter the position of the template RNA in the entry channel of the enzyme, thereby affecting nucleotide recognition. The results provide evidence of a new mechanism of resistance to a mutagenic nucleoside analogue which allows the virus to maintain a balance among mutation types introduced into progeny genomes during replication under strong mutagenic pressure. Public Library of Science 2010-08-26 /pmc/articles/PMC2928812/ /pubmed/20865120 http://dx.doi.org/10.1371/journal.ppat.1001072 Text en Agudo et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Agudo, Rubén Ferrer-Orta, Cristina Arias, Armando de la Higuera, Ignacio Perales, Celia Pérez-Luque, Rosa Verdaguer, Nuria Domingo, Esteban A Multi-Step Process of Viral Adaptation to a Mutagenic Nucleoside Analogue by Modulation of Transition Types Leads to Extinction-Escape |
title | A Multi-Step Process of Viral Adaptation to a Mutagenic Nucleoside Analogue by Modulation of Transition Types Leads to Extinction-Escape |
title_full | A Multi-Step Process of Viral Adaptation to a Mutagenic Nucleoside Analogue by Modulation of Transition Types Leads to Extinction-Escape |
title_fullStr | A Multi-Step Process of Viral Adaptation to a Mutagenic Nucleoside Analogue by Modulation of Transition Types Leads to Extinction-Escape |
title_full_unstemmed | A Multi-Step Process of Viral Adaptation to a Mutagenic Nucleoside Analogue by Modulation of Transition Types Leads to Extinction-Escape |
title_short | A Multi-Step Process of Viral Adaptation to a Mutagenic Nucleoside Analogue by Modulation of Transition Types Leads to Extinction-Escape |
title_sort | multi-step process of viral adaptation to a mutagenic nucleoside analogue by modulation of transition types leads to extinction-escape |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2928812/ https://www.ncbi.nlm.nih.gov/pubmed/20865120 http://dx.doi.org/10.1371/journal.ppat.1001072 |
work_keys_str_mv | AT agudoruben amultistepprocessofviraladaptationtoamutagenicnucleosideanaloguebymodulationoftransitiontypesleadstoextinctionescape AT ferrerortacristina amultistepprocessofviraladaptationtoamutagenicnucleosideanaloguebymodulationoftransitiontypesleadstoextinctionescape AT ariasarmando amultistepprocessofviraladaptationtoamutagenicnucleosideanaloguebymodulationoftransitiontypesleadstoextinctionescape AT delahigueraignacio amultistepprocessofviraladaptationtoamutagenicnucleosideanaloguebymodulationoftransitiontypesleadstoextinctionescape AT peralescelia amultistepprocessofviraladaptationtoamutagenicnucleosideanaloguebymodulationoftransitiontypesleadstoextinctionescape AT perezluquerosa amultistepprocessofviraladaptationtoamutagenicnucleosideanaloguebymodulationoftransitiontypesleadstoextinctionescape AT verdaguernuria amultistepprocessofviraladaptationtoamutagenicnucleosideanaloguebymodulationoftransitiontypesleadstoextinctionescape AT domingoesteban amultistepprocessofviraladaptationtoamutagenicnucleosideanaloguebymodulationoftransitiontypesleadstoextinctionescape AT agudoruben multistepprocessofviraladaptationtoamutagenicnucleosideanaloguebymodulationoftransitiontypesleadstoextinctionescape AT ferrerortacristina multistepprocessofviraladaptationtoamutagenicnucleosideanaloguebymodulationoftransitiontypesleadstoextinctionescape AT ariasarmando multistepprocessofviraladaptationtoamutagenicnucleosideanaloguebymodulationoftransitiontypesleadstoextinctionescape AT delahigueraignacio multistepprocessofviraladaptationtoamutagenicnucleosideanaloguebymodulationoftransitiontypesleadstoextinctionescape AT peralescelia multistepprocessofviraladaptationtoamutagenicnucleosideanaloguebymodulationoftransitiontypesleadstoextinctionescape AT perezluquerosa multistepprocessofviraladaptationtoamutagenicnucleosideanaloguebymodulationoftransitiontypesleadstoextinctionescape AT verdaguernuria multistepprocessofviraladaptationtoamutagenicnucleosideanaloguebymodulationoftransitiontypesleadstoextinctionescape AT domingoesteban multistepprocessofviraladaptationtoamutagenicnucleosideanaloguebymodulationoftransitiontypesleadstoextinctionescape |