Cargando…

Enhanced Gene Delivery Mediated by Low Molecular Weight Chitosan/DNA Complexes: Effect of pH and Serum

This study was designed to systematically evaluate the influence of pH and serum on the transfection process of chitosan–DNA complexes, with the objective of maximizing their efficiency. The hydrodynamic diameter of the complexes, measured by dynamic light scattering (DLS), was found to increase wit...

Descripción completa

Detalles Bibliográficos
Autores principales: Nimesh, Surendra, Thibault, Marc M., Lavertu, Marc, Buschmann, Michael D.
Formato: Texto
Lenguaje:English
Publicado: Humana Press Inc 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929434/
https://www.ncbi.nlm.nih.gov/pubmed/20454872
http://dx.doi.org/10.1007/s12033-010-9286-1
Descripción
Sumario:This study was designed to systematically evaluate the influence of pH and serum on the transfection process of chitosan–DNA complexes, with the objective of maximizing their efficiency. The hydrodynamic diameter of the complexes, measured by dynamic light scattering (DLS), was found to increase with salt and pH from 243 nm in water to 1244 nm in PBS at pH 7.4 and aggregation in presence of 10% serum. The cellular uptake of complexes into HEK 293 cells assessed by flow cytometry and confocal fluorescent imaging was found to increase at lower pH and serum. Based on these data, new methodology were tested and high levels of transfection (>40%) were achieved when transfection was initiated at pH 6.5 with 10% serum for 8–24 h to maximize uptake and then the media was changed to pH 7.4 with 10% serum for an additional 24–40 h period. Cytotoxicity of chitosan/DNA complexes was also considerably lower than Lipofectamine™. Our study demonstrates that the evaluation of the influence of important parameters in the methodology of transfection enables the understanding of crucial physicochemical and biological mechanisms which allows for the design of methodologies maximising transgene expression.