Cargando…

Design and Evaluation of Liposomal Formulation of Pilocarpine Nitrate

Prolonged release drug delivery system of pilocarpine nitrate was made by optimizing thin layer film hydration method. Egg phosphatidylcholine and cholesterol were used to make multilamellar vesicles. Effects of charges over the vesicles were studied by incorporating dicetylphosphate and stearylamin...

Descripción completa

Detalles Bibliográficos
Autores principales: Rathod, S., Deshpande, S. G.
Formato: Texto
Lenguaje:English
Publicado: Medknow Publications 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929772/
https://www.ncbi.nlm.nih.gov/pubmed/20838517
http://dx.doi.org/10.4103/0250-474X.65014
Descripción
Sumario:Prolonged release drug delivery system of pilocarpine nitrate was made by optimizing thin layer film hydration method. Egg phosphatidylcholine and cholesterol were used to make multilamellar vesicles. Effects of charges over the vesicles were studied by incorporating dicetylphosphate and stearylamine. Various factors, which may affect the size, shape, encapsulation efficiency and release rate, were studied. Liposomes in the size range 0.2 to 1 µm were obtained by optimizing the process. Encapsulation efficiency of neutral, positive and negatively charged liposomes were found to be 32.5, 35.4 and 34.2 percent, respectively. In vitro drug release rate was studied on specially designed model. Biological response in terms of reduction in intraocular pressure was observed on rabbit eyes. Pilocarpine nitrate liposomes were lyophilized and stability studies were conducted.