Cargando…
Segmentation of Fluorescence Microscopy Cell Images Using Unsupervised Mining
The accurate measurement of cell and nuclei contours are critical for the sensitive and specific detection of changes in normal cells in several medical informatics disciplines. Within microscopy, this task is facilitated using fluorescence cell stains, and segmentation is often the first step in su...
Autores principales: | Du, Xian, Dua, Sumeet |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Bentham Open
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2930152/ https://www.ncbi.nlm.nih.gov/pubmed/21116323 http://dx.doi.org/10.2174/1874431101004020041 |
Ejemplares similares
-
Data mining and machine learning in cybersecurity
por: Dua, Sumeet, et al.
Publicado: (2011) -
Unsupervised segmentation of noisy electron microscopy images using salient watersheds and region merging
por: Navlakha, Saket, et al.
Publicado: (2013) -
An unsupervised image segmentation algorithm for coronary angiography
por: Yin, Zong-Xian, et al.
Publicado: (2022) -
Data Mining in Biomedical Imaging, Signaling, and Systems
por: Dua, Sumeet, et al.
Publicado: (2016) -
Robust blind spectral unmixing for fluorescence microscopy using unsupervised learning
por: McRae, Tristan D., et al.
Publicado: (2019)