Cargando…
In vitro study on the schedule-dependency of the interaction between pemetrexed, gemcitabine and irradiation in non-small cell lung cancer and head and neck cancer cells
BACKGROUND: Based on their different mechanisms of action, non-overlapping side effects and radiosensitising potential, combining the antimetabolites pemetrexed (multitargeted antifolate, MTA) and gemcitabine (2',2'-difluorodeoxycytidine, dFdC) with irradiation (RT) seems promising. This i...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2931492/ https://www.ncbi.nlm.nih.gov/pubmed/20723210 http://dx.doi.org/10.1186/1471-2407-10-441 |
Sumario: | BACKGROUND: Based on their different mechanisms of action, non-overlapping side effects and radiosensitising potential, combining the antimetabolites pemetrexed (multitargeted antifolate, MTA) and gemcitabine (2',2'-difluorodeoxycytidine, dFdC) with irradiation (RT) seems promising. This in vitro study, for the first time, presents the triple combination of MTA, dFdC and irradiation using various treatment schedules. METHODS: The cytotoxicity, radiosensitising potential and cell cycle effect of MTA were investigated in A549 (NSCLC) and CAL-27 (SCCHN) cells. Using simultaneous or sequential exposure schedules, the cytotoxicity and radiosensitising effect of 24 h MTA combined with 1 h or 24 h dFdC were analysed. RESULTS: Including a time interval between MTA exposure and irradiation seemed favourable to MTA immediately preceding or following radiotherapy. MTA induced a significant S phase accumulation that persisted for more than 8 h after drug removal. Among different MTA/dFdC combinations tested, the highest synergistic interaction was produced by 24 h MTA followed by 1 h dFdC. Combined with irradiation, this schedule showed a clear radiosensitising effect. CONCLUSIONS: Results from our in vitro model suggest that the sequence 24 h MTA → 1 h dFdC → RT is the most rational design and would, after confirmation in an in vivo setting, possibly provide the greatest benefit in the clinic. |
---|