Cargando…
Identification and Expression of the Family of Classical Protein-Tyrosine Phosphatases in Zebrafish
Protein-tyrosine phosphatases (PTPs) have an important role in cell survival, differentiation, proliferation, migration and other cellular processes in conjunction with protein-tyrosine kinases. Still relatively little is known about the function of PTPs in vivo. We set out to systematically identif...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2933243/ https://www.ncbi.nlm.nih.gov/pubmed/20838449 http://dx.doi.org/10.1371/journal.pone.0012573 |
_version_ | 1782186126585364480 |
---|---|
author | van Eekelen, Mark Overvoorde, John van Rooijen, Carina den Hertog, Jeroen |
author_facet | van Eekelen, Mark Overvoorde, John van Rooijen, Carina den Hertog, Jeroen |
author_sort | van Eekelen, Mark |
collection | PubMed |
description | Protein-tyrosine phosphatases (PTPs) have an important role in cell survival, differentiation, proliferation, migration and other cellular processes in conjunction with protein-tyrosine kinases. Still relatively little is known about the function of PTPs in vivo. We set out to systematically identify all classical PTPs in the zebrafish genome and characterize their expression patterns during zebrafish development. We identified 48 PTP genes in the zebrafish genome by BLASTing of human PTP sequences. We verified all in silico hits by sequencing and established the spatio-temporal expression patterns of all PTPs by in situ hybridization of zebrafish embryos at six distinct developmental stages. The zebrafish genome encodes 48 PTP genes. 14 human orthologs are duplicated in the zebrafish genome and 3 human orthologs were not identified. Based on sequence conservation, most zebrafish orthologues of human PTP genes were readily assigned. Interestingly, the duplicated form of ptpn23, a catalytically inactive PTP, has lost its PTP domain, indicating that PTP activity is not required for its function, or that ptpn23b has lost its PTP domain in the course of evolution. All 48 PTPs are expressed in zebrafish embryos. Most PTPs are maternally provided and are broadly expressed early on. PTP expression becomes progressively restricted during development. Interestingly, some duplicated genes retained their expression pattern, whereas expression of other duplicated genes was distinct or even mutually exclusive, suggesting that the function of the latter PTPs has diverged. In conclusion, we have identified all members of the family of classical PTPs in the zebrafish genome and established their expression patterns. This is the first time the expression patterns of all members of the large family of PTP genes have been established in a vertebrate. Our results provide the first step towards elucidation of the function of the family of classical PTPs. |
format | Text |
id | pubmed-2933243 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-29332432010-09-13 Identification and Expression of the Family of Classical Protein-Tyrosine Phosphatases in Zebrafish van Eekelen, Mark Overvoorde, John van Rooijen, Carina den Hertog, Jeroen PLoS One Research Article Protein-tyrosine phosphatases (PTPs) have an important role in cell survival, differentiation, proliferation, migration and other cellular processes in conjunction with protein-tyrosine kinases. Still relatively little is known about the function of PTPs in vivo. We set out to systematically identify all classical PTPs in the zebrafish genome and characterize their expression patterns during zebrafish development. We identified 48 PTP genes in the zebrafish genome by BLASTing of human PTP sequences. We verified all in silico hits by sequencing and established the spatio-temporal expression patterns of all PTPs by in situ hybridization of zebrafish embryos at six distinct developmental stages. The zebrafish genome encodes 48 PTP genes. 14 human orthologs are duplicated in the zebrafish genome and 3 human orthologs were not identified. Based on sequence conservation, most zebrafish orthologues of human PTP genes were readily assigned. Interestingly, the duplicated form of ptpn23, a catalytically inactive PTP, has lost its PTP domain, indicating that PTP activity is not required for its function, or that ptpn23b has lost its PTP domain in the course of evolution. All 48 PTPs are expressed in zebrafish embryos. Most PTPs are maternally provided and are broadly expressed early on. PTP expression becomes progressively restricted during development. Interestingly, some duplicated genes retained their expression pattern, whereas expression of other duplicated genes was distinct or even mutually exclusive, suggesting that the function of the latter PTPs has diverged. In conclusion, we have identified all members of the family of classical PTPs in the zebrafish genome and established their expression patterns. This is the first time the expression patterns of all members of the large family of PTP genes have been established in a vertebrate. Our results provide the first step towards elucidation of the function of the family of classical PTPs. Public Library of Science 2010-09-03 /pmc/articles/PMC2933243/ /pubmed/20838449 http://dx.doi.org/10.1371/journal.pone.0012573 Text en van Eekelen et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article van Eekelen, Mark Overvoorde, John van Rooijen, Carina den Hertog, Jeroen Identification and Expression of the Family of Classical Protein-Tyrosine Phosphatases in Zebrafish |
title | Identification and Expression of the Family of Classical Protein-Tyrosine Phosphatases in Zebrafish |
title_full | Identification and Expression of the Family of Classical Protein-Tyrosine Phosphatases in Zebrafish |
title_fullStr | Identification and Expression of the Family of Classical Protein-Tyrosine Phosphatases in Zebrafish |
title_full_unstemmed | Identification and Expression of the Family of Classical Protein-Tyrosine Phosphatases in Zebrafish |
title_short | Identification and Expression of the Family of Classical Protein-Tyrosine Phosphatases in Zebrafish |
title_sort | identification and expression of the family of classical protein-tyrosine phosphatases in zebrafish |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2933243/ https://www.ncbi.nlm.nih.gov/pubmed/20838449 http://dx.doi.org/10.1371/journal.pone.0012573 |
work_keys_str_mv | AT vaneekelenmark identificationandexpressionofthefamilyofclassicalproteintyrosinephosphatasesinzebrafish AT overvoordejohn identificationandexpressionofthefamilyofclassicalproteintyrosinephosphatasesinzebrafish AT vanrooijencarina identificationandexpressionofthefamilyofclassicalproteintyrosinephosphatasesinzebrafish AT denhertogjeroen identificationandexpressionofthefamilyofclassicalproteintyrosinephosphatasesinzebrafish |