Cargando…

Assessing mechanical integrity of spinal fusion by in situ endochondral osteoinduction in the murine model

BACKGROUND: Historically, radiographs, micro-computed tomography (micro-CT) exams, palpation and histology have been used to assess fusions in a mouse spine. The objective of this study was to develop a faster, cheaper, reproducible test to directly quantify the mechanical integrity of spinal fusion...

Descripción completa

Detalles Bibliográficos
Autores principales: Dewan, Ashvin K, Dewan, Rahul A, Calderon, Nathan, Fuentes, Angie, Lazard, ZaWaunyka, Davis, Alan R, Heggeness, Michael, Hipp, John A, Olmsted-Davis, Elizabeth A
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2933711/
https://www.ncbi.nlm.nih.gov/pubmed/20727195
http://dx.doi.org/10.1186/1749-799X-5-58
Descripción
Sumario:BACKGROUND: Historically, radiographs, micro-computed tomography (micro-CT) exams, palpation and histology have been used to assess fusions in a mouse spine. The objective of this study was to develop a faster, cheaper, reproducible test to directly quantify the mechanical integrity of spinal fusions in mice. METHODS: Fusions were induced in ten mice spine using a previously described technique of in situ endochondral ossification, harvested with soft tissue, and cast in radiolucent alginate material for handling. Using a validated software package and a customized mechanical apparatus that flexed and extended the spinal column, the amount of intervertebral motion between adjacent vertebral discs was determined with static flexed and extended lateral spine radiographs. Micro-CT images of the same were also blindly reviewed for fusion. RESULTS: Mean intervertebral motion between control, non-fused, spinal vertebral discs was 6.1 ± 0.2° during spine flexion/extension. In fusion samples, adjacent vertebrae with less than 3.5° intervertebral motion had fusions documented by micro-CT inspection. CONCLUSIONS: Measuring the amount of intervertebral rotation between vertebrae during spine flexion/extension is a relatively simple, cheap (<$100), clinically relevant, and fast test for assessing the mechanical success of spinal fusion in mice that compared favorably to the standard, micro-CT.