Cargando…
An adaptive optimal ensemble classifier via bagging and rank aggregation with applications to high dimensional data
BACKGROUND: Generally speaking, different classifiers tend to work well for certain types of data and conversely, it is usually not known a priori which algorithm will be optimal in any given classification application. In addition, for most classification problems, selecting the best performing cla...
Autores principales: | Datta, Susmita, Pihur, Vasyl, Datta, Somnath |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2933716/ https://www.ncbi.nlm.nih.gov/pubmed/20716381 http://dx.doi.org/10.1186/1471-2105-11-427 |
Ejemplares similares
-
RankAggreg, an R package for weighted rank aggregation
por: Pihur, Vasyl, et al.
Publicado: (2009) -
Meta analysis of Chronic Fatigue Syndrome through integration of clinical, gene expression, SNP and proteomic data
por: Pihur, Vasyl, et al.
Publicado: (2011) -
Metagenomic Geolocation Prediction Using an Adaptive Ensemble Classifier
por: Anyaso-Samuel, Samuel, et al.
Publicado: (2021) -
Methods for evaluating clustering algorithms for gene expression data using a reference set of functional classes
por: Datta, Susmita, et al.
Publicado: (2006) -
A statistical framework for differential network analysis from microarray data
por: Gill, Ryan, et al.
Publicado: (2010)