Cargando…
miRNAs regulate SIRT1 expression during mouse embryonic stem cell differentiation and in adult mouse tissues
SIRT1 is increasingly recognized as a critical regulator of stress responses, replicative senescence, inflammation, metabolism, and aging. SIRT1 expression is regulated transcriptionally and post-transcriptionally, and its enzymatic activity is controlled by NAD(+) levels and interacting proteins. W...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2933889/ https://www.ncbi.nlm.nih.gov/pubmed/20634564 |
Sumario: | SIRT1 is increasingly recognized as a critical regulator of stress responses, replicative senescence, inflammation, metabolism, and aging. SIRT1 expression is regulated transcriptionally and post-transcriptionally, and its enzymatic activity is controlled by NAD(+) levels and interacting proteins. We found that SIRT1 protein levels were much higher in mouse embryonic stem cells (mESCs) than in differentiated tissues. miRNAs post-transcriptionally downregulated SIRT1 during mESC differentiation and maintained low levels of SIRT1 expression in differentiated tissues. Specifically, miR-181a and b, miR-9, miR-204, miR-199b, and miR-135a suppressed SIRT1 protein expression. Inhibition of mir-9, the SIRT1-targeting miRNA induced earliest during mESC differentiation, prevented SIRT1 downregulation. Conversely, SIRT1 protein levels were upregulated post-transcriptionally during the reprogramming of mouse embryonic fibroblasts (MEFs) into induced pluripotent stem (iPS) cells. The regulation of SIRT1 protein levels by miRNAs might provide new opportunities for therapeutic tissue-specific modulation of SIRT1 expression and for reprogramming of somatic cells into iPS cells. |
---|