Cargando…
SR proteins and galectins: what's in a name?
Although members of the serine (S)- and arginine (R)-rich splicing factor family (SR proteins) were initially purified on the basis of their splicing activity in the nucleus, there is recent documentation that they exhibit carbohydrate-binding activity at the cell surface. In contrast, galectins wer...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2934707/ https://www.ncbi.nlm.nih.gov/pubmed/20574110 http://dx.doi.org/10.1093/glycob/cwq097 |
Sumario: | Although members of the serine (S)- and arginine (R)-rich splicing factor family (SR proteins) were initially purified on the basis of their splicing activity in the nucleus, there is recent documentation that they exhibit carbohydrate-binding activity at the cell surface. In contrast, galectins were isolated on the basis of their saccharide-binding activity and cell surface localization. Surprisingly, however, two members (galectin-1 and galectin-3) can be found in association with nuclear ribonucleoprotein complexes including the spliceosome and, using a cell-free assay, have been shown to be required splicing factors. Thus, despite the difference in terms of their original points of interest, it now appears that members of the two protein families share four key properties: (a) nuclear and cytoplasmic distribution; (b) pre-mRNA splicing activity; (c) carbohydrate-binding activity; and (d) cell surface localization in specific cells. These findings provoke stimulating questions regarding the relationship between splicing factors in the nucleus and carbohydrate-binding proteins at the cell surface. |
---|