Cargando…
Entropy-based gene ranking without selection bias for the predictive classification of microarray data
BACKGROUND: We describe the E-RFE method for gene ranking, which is useful for the identification of markers in the predictive classification of array data. The method supports a practical modeling scheme designed to avoid the construction of classification rules based on the selection of too small...
Autores principales: | Furlanello, Cesare, Serafini, Maria, Merler, Stefano, Jurman, Giuseppe |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2003
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC293475/ https://www.ncbi.nlm.nih.gov/pubmed/14604446 http://dx.doi.org/10.1186/1471-2105-4-54 |
Ejemplares similares
-
A machine learning pipeline for quantitative phenotype prediction from genotype data
por: Guzzetta, Giorgio, et al.
Publicado: (2010) -
Tumor classification ranking from microarray data
por: Hewett, Rattikorn, et al.
Publicado: (2008) -
A Comparison of MCC and CEN Error Measures in Multi-Class Prediction
por: Jurman, Giuseppe, et al.
Publicado: (2012) -
DTW-MIC Coexpression Networks from Time-Course Data
por: Riccadonna, Samantha, et al.
Publicado: (2016) -
An Entropy-based gene selection method for cancer classification using microarray data
por: Liu, Xiaoxing, et al.
Publicado: (2005)