Cargando…

cis9, trans11-Conjugated Linoleic Acid Differentiates Mouse 3T3-L1 Preadipocytes into Mature Small Adipocytes through Induction of Peroxisome Proliferator-activated Receptor γ

Dietary conjugated linoleic acid (CLA) has been reported to exhibit a number of therapeutic effects in animal models and patients, such as anti-hypertensive, anti-hyperlipidemic, anti-arteriosclerotic, anti-carcinogenic, and anti-diabetic effects. However, the underlying mechanism is not well-charac...

Descripción completa

Detalles Bibliográficos
Autores principales: Sakuma, Satoru, Nishioka, Yuki, Imanishi, Ryohta, Nishikawa, Kenji, Sakamoto, Hirotada, Fujisawa, Junji, Wada, Koichiro, Kamisaki, Yoshinori, Fujimoto, Yohko
Formato: Texto
Lenguaje:English
Publicado: the Society for Free Radical Research Japan 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2935157/
https://www.ncbi.nlm.nih.gov/pubmed/20838573
http://dx.doi.org/10.3164/jcbn.10-44
Descripción
Sumario:Dietary conjugated linoleic acid (CLA) has been reported to exhibit a number of therapeutic effects in animal models and patients, such as anti-hypertensive, anti-hyperlipidemic, anti-arteriosclerotic, anti-carcinogenic, and anti-diabetic effects. However, the underlying mechanism is not well-characterized. In the present study, the effects of cis(c)9, trans(t)11-CLA on the differentiation of mouse 3T3-L1 preadipocytes into mature adipocytes were examined. Treatment with c9, t11-CLA in the presence of insulin, dexamethasone, and 3-isobutyl-1-methyl-xanthine (differentiation cocktail) significantly stimulated the accumulation of triacylglycerol. The microscopic observation of cells stained by Oil Red O demonstrated that c9, t11-CLA increases the amount and proportion of small mature adipocytes secreting adiponectin, a benign adipocytokine, when compared to the differentiation cocktail alone. Furthermore, c9, t11-CLA increased bioactive peroxisome proliferator-activated receptor γ (PPARγ) levels in a nuclear extract of 3T3-L1 cells, suggesting the enhancing effect of this fatty acid on the nuclear transmission of PPARγ, a master regulator of adipocyte differentiation, in 3T3-L1 cells. These results suggest that the therapeutic effects of c9, t11-CLA on lifestyle-related diseases are partially due to the enhanced formation of small adipocytes from preadipocytes via PPARγ stimulation.